import datasets import torch import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset('beans') feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences Instruction = "Submit leaf images" title="Bean leaf disease classification demo" description = "classification of leaves by uploading an image" interface = gr.Interface( classify, interpretation="default", inputs='image', outputs='label', instructuction = Instruction, title = title, description = description, examples=["image1.png", "image2.png", "image3.png"] ) interface.launch(debug=True)