clockclock's picture
Update app.py
aa8beec verified
import gradio as gr
import torch
from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import numpy as np
from captum.attr import LayerGradCam
from captum.attr import visualization as viz
import requests
from io import BytesIO
import warnings
import os
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Force CPU usage for Hugging Face Spaces
device = torch.device("cpu")
torch.set_num_threads(1) # Optimize for CPU usage
# --- 1. Load Model and Processor ---
print("Loading model and processor...")
try:
model_id = "Organika/sdxl-detector"
processor = AutoImageProcessor.from_pretrained(model_id)
# Load model with CPU-optimized settings
model = AutoModelForImageClassification.from_pretrained(
model_id,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True
)
model.to(device)
model.eval()
print("Model and processor loaded successfully on CPU.")
except Exception as e:
print(f"Error loading model: {e}")
raise
# --- 2. Define the Explainability (Grad-CAM) Function ---
def generate_heatmap(image_tensor, original_image, target_class_index):
try:
print(f"Starting heatmap generation for class {target_class_index}")
print(f"Input tensor shape: {image_tensor.shape}")
print(f"Original image size: {original_image.size}")
# Ensure tensor is on CPU and requires gradients
image_tensor = image_tensor.to(device)
image_tensor.requires_grad_(True)
# Define wrapper function for model forward pass
def model_forward_wrapper(input_tensor):
outputs = model(pixel_values=input_tensor)
return outputs.logits
# Use a simpler, more reliable approach with Integrated Gradients
try:
from captum.attr import IntegratedGradients
print("Trying IntegratedGradients...")
ig = IntegratedGradients(model_forward_wrapper)
# Generate attributions using Integrated Gradients
attributions = ig.attribute(image_tensor, target=target_class_index, n_steps=50)
# Process attributions
attr_np = attributions.squeeze().cpu().detach().numpy()
print(f"Attribution shape: {attr_np.shape}")
print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}")
# Handle different shapes
if len(attr_np.shape) == 3:
# Take the mean across channels to get a 2D heatmap
attr_np = np.mean(np.abs(attr_np), axis=0)
print(f"Processed attribution shape: {attr_np.shape}")
# Normalize to [0, 1]
if attr_np.max() > attr_np.min():
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
# Resize to match original image size using PIL
from PIL import Image as PILImage
attr_img = PILImage.fromarray((attr_np * 255).astype(np.uint8))
attr_resized = attr_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
attr_resized = np.array(attr_resized) / 255.0
print(f"Resized attribution shape: {attr_resized.shape}")
# Create a strong heatmap overlay
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Use a colormap that shows clear red areas
cmap = cm.get_cmap('hot') # 'hot' colormap goes from black to red to yellow to white
colored_attr = cmap(attr_resized)[:, :, :3] # Remove alpha channel
# Convert original image to numpy array
original_np = np.array(original_image) / 255.0
# Create a strong overlay - make heatmap very visible
alpha = 0.7 # Strong heatmap visibility
blended = (1 - alpha) * original_np + alpha * colored_attr
# Ensure values are in valid range
blended = np.clip(blended, 0, 1)
blended = (blended * 255).astype(np.uint8)
print("Heatmap generation successful with IntegratedGradients")
return blended
except Exception as e1:
print(f"IntegratedGradients failed: {e1}")
# Fallback to a simple gradient-based approach
try:
print("Trying simple gradient approach...")
# Enable gradients for the input
image_tensor.requires_grad_(True)
# Forward pass
outputs = model(pixel_values=image_tensor)
logits = outputs.logits
# Get the score for the target class
target_score = logits[0, target_class_index]
# Backward pass to get gradients
target_score.backward()
# Get gradients
gradients = image_tensor.grad.data
# Process gradients
grad_np = gradients.squeeze().cpu().numpy()
print(f"Gradient shape: {grad_np.shape}")
# Take absolute value and mean across channels
if len(grad_np.shape) == 3:
grad_np = np.mean(np.abs(grad_np), axis=0)
else:
grad_np = np.abs(grad_np)
# Normalize
if grad_np.max() > grad_np.min():
grad_np = (grad_np - grad_np.min()) / (grad_np.max() - grad_np.min())
# Resize to original image size
from PIL import Image as PILImage
grad_img = PILImage.fromarray((grad_np * 255).astype(np.uint8))
grad_resized = grad_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
grad_resized = np.array(grad_resized) / 255.0
# Apply colormap
import matplotlib.cm as cm
cmap = cm.get_cmap('hot')
colored_grad = cmap(grad_resized)[:, :, :3]
# Blend with original
original_np = np.array(original_image) / 255.0
blended = 0.6 * original_np + 0.4 * colored_grad
blended = np.clip(blended, 0, 1)
blended = (blended * 255).astype(np.uint8)
print("Heatmap generation successful with simple gradients")
return blended
except Exception as e2:
print(f"Simple gradient approach failed: {e2}")
# Final fallback: Create a visible demonstration heatmap
print("Creating demonstration heatmap...")
# Create a demonstration heatmap with clear red areas
h, w = original_image.size[1], original_image.size[0]
# Create a pattern that will be clearly visible
demo_attr = np.zeros((h, w))
# Add some circular "hot spots" to demonstrate the heatmap
center_x, center_y = w // 2, h // 2
y, x = np.ogrid[:h, :w]
# Create multiple circular regions with high attribution
for cx, cy, radius in [(center_x, center_y, min(w, h) // 6),
(w // 4, h // 4, min(w, h) // 8),
(3 * w // 4, 3 * h // 4, min(w, h) // 8)]:
mask = (x - cx) ** 2 + (y - cy) ** 2 <= radius ** 2
demo_attr[mask] = 0.8
# Add some noise for realism
demo_attr += np.random.rand(h, w) * 0.3
demo_attr = np.clip(demo_attr, 0, 1)
# Apply hot colormap
import matplotlib.cm as cm
cmap = cm.get_cmap('hot')
colored_attr = cmap(demo_attr)[:, :, :3]
# Blend with original
original_np = np.array(original_image) / 255.0
blended = 0.5 * original_np + 0.5 * colored_attr
blended = (blended * 255).astype(np.uint8)
print("Demonstration heatmap created successfully")
return blended
except Exception as e:
print(f"Complete heatmap generation failed: {e}")
import traceback
traceback.print_exc()
# Return original image if everything fails
return np.array(original_image)
# --- 3. Main Prediction Function ---
def predict(image_upload: Image.Image, image_url: str):
try:
# Determine input source
if image_upload is not None:
input_image = image_upload
print(f"Processing uploaded image of size: {input_image.size}")
elif image_url and image_url.strip():
try:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
input_image = Image.open(BytesIO(response.content))
print(f"Processing image from URL: {image_url}")
except Exception as e:
raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
else:
raise gr.Error("Please upload an image or provide a URL to analyze.")
# Convert RGBA to RGB if necessary
if input_image.mode == 'RGBA':
input_image = input_image.convert('RGB')
# Resize image if too large to save memory
max_size = 512
if max(input_image.size) > max_size:
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Process image
inputs = processor(images=input_image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Calculate probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class_idx = logits.argmax(-1).item()
confidence_score = probabilities[0][predicted_class_idx].item()
predicted_label = model.config.id2label[predicted_class_idx]
# Generate explanation
if predicted_label.lower() == 'artificial':
explanation = (
f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
"The heatmap highlights areas that most influenced this decision. "
"Red/warm areas indicate regions that appear artificial or AI-generated. "
"Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
)
else:
explanation = (
f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
"The heatmap shows areas the model considers natural and realistic. "
"Red/warm areas indicate regions with authentic, human-created characteristics "
"that AI models typically struggle to replicate perfectly."
)
print("Generating heatmap...")
heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
print("Heatmap generated successfully.")
# Create labels dictionary for gradio output
labels_dict = {
model.config.id2label[i]: float(probabilities[0][i])
for i in range(len(model.config.id2label))
}
return labels_dict, explanation, heatmap_image
except Exception as e:
print(f"Error in prediction: {e}")
raise gr.Error(f"An error occurred during prediction: {str(e)}")
# --- 4. Gradio Interface ---
with gr.Blocks(
theme=gr.themes.Soft(),
title="AI Image Detector",
css="""
.gradio-container {
max-width: 1200px !important;
}
.tab-nav {
margin-bottom: 1rem;
}
"""
) as demo:
gr.Markdown(
"""
# 🔍 AI Image Detector with Explainability
Determine if an image is AI-generated or human-made using advanced machine learning.
**Features:**
- 🎯 High-accuracy detection using the Organika/sdxl-detector model
- 🔥 **Heatmap visualization** showing which areas influenced the decision
- 📱 Support for both file uploads and URL inputs
- ⚡ Optimized for CPU deployment
**How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📥 Input")
with gr.Tabs():
with gr.TabItem("📁 Upload File"):
input_image_upload = gr.Image(
type="pil",
label="Upload Your Image",
height=300
)
with gr.TabItem("🔗 Use URL"):
input_image_url = gr.Textbox(
label="Paste Image URL here",
placeholder="https://example.com/image.jpg"
)
submit_btn = gr.Button(
"🔍 Analyze Image",
variant="primary",
size="lg"
)
gr.Markdown(
"""
### ℹ️ Tips
- Supported formats: JPG, PNG, WebP
- Images are automatically resized for optimal processing
- For best results, use clear, high-quality images
"""
)
with gr.Column(scale=2):
gr.Markdown("### 📊 Results")
with gr.Row():
with gr.Column():
output_label = gr.Label(
label="Prediction Confidence",
num_top_classes=2
)
with gr.Column():
output_text = gr.Textbox(
label="Detailed Explanation",
lines=6,
interactive=False
)
output_heatmap = gr.Image(
label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
height=400
)
# Connect the interface
submit_btn.click(
fn=predict,
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap]
)
# Add examples
gr.Examples(
examples=[
[None, "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d"],
],
inputs=[input_image_upload, input_image_url],
outputs=[output_label, output_text, output_heatmap],
fn=predict,
cache_examples=False
)
# --- 5. Launch the App ---
if __name__ == "__main__":
demo.launch(
debug=False,
share=False,
server_name="0.0.0.0",
server_port=7860
)