Santi Diana
Uploaded state-of-the-art propietary models
3aae85b
raw
history blame
3.66 kB
import gradio as gr
import pandas as pd
dataframe = pd.read_csv('data/general.csv')
NUM_DATASETS = 7
NUM_SCORES = 0
NUM_MODELS = len(dataframe)
def general_dataframe_update():
"""
Returns general dataframe for general table.
"""
dataframe = pd.read_csv('data/general.csv')
return dataframe
def classification_dataframe_update():
"""
Returns classification dataframe for classification table.
"""
dataframe = pd.read_csv('data/classification.csv')
return dataframe
def sts_dataframe_udpate():
"""
Returns sts dataframe for sts table.
"""
dataframe = pd.read_csv('data/sts.csv')
return dataframe
def clustering_dataframe_update():
pass
def retrieval_dataframe_update():
pass
block = gr.Blocks()
with block:
gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español
Massive Text Embedding Benchmark (MTEB) Leaderboard.**
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 1
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""")
with gr.Tabs():
with gr.TabItem("Overall"):
with gr.Row():
gr.Markdown("""
**Tabla General de Embeddings**
- **Métricas:** Varias, con sus respectivas medias.
- **Idioma:** Español
""")
with gr.Row():
overall = general_dataframe_update()
data_overall = gr.components.Dataframe(
overall,
type="pandas",
wrap=True,
)
with gr.TabItem("Classification"):
with gr.Row():
gr.Markdown("""
**Tabla Classification de Embeddings**
- **Métricas:** Spearman correlation based on cosine similarity.
- **Idioma:** Español
""")
with gr.Row():
# Create and display a sample DataFrame
classification = classification_dataframe_update()
data_overall = gr.components.Dataframe(
classification,
type="pandas",
wrap=True,
)
with gr.TabItem("STS"):
with gr.Row():
gr.Markdown("""
**Tabla Classification de Embeddings**
- **Metricas:** .
- **Idioma:** Español
""")
with gr.Row():
# Create and display a sample DataFrame
sts = sts_dataframe_udpate()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
with gr.TabItem("Clustering"):
with gr.Row():
# Create and display a sample DataFrame
sts = clustering_dataframe_update()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
with gr.TabItem("Retrieval"):
with gr.Row():
# Create and display a sample DataFrame
sts = retrieval_dataframe_update()
data_overall = gr.components.Dataframe(
sts,
type="pandas",
wrap=True,
)
block.launch()