Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
dataframe = pd.read_csv('data/general.csv') | |
NUM_DATASETS = 7 | |
NUM_SCORES = 0 | |
NUM_MODELS = len(dataframe) | |
def general_dataframe_update(): | |
""" | |
Returns general dataframe for general table. | |
""" | |
dataframe = pd.read_csv('data/general.csv') | |
return dataframe | |
def classification_dataframe_update(): | |
""" | |
Returns classification dataframe for classification table. | |
""" | |
dataframe = pd.read_csv('data/classification.csv') | |
return dataframe | |
def sts_dataframe_udpate(): | |
""" | |
Returns sts dataframe for sts table. | |
""" | |
dataframe = pd.read_csv('data/sts.csv') | |
return dataframe | |
def clustering_dataframe_update(): | |
pass | |
def retrieval_dataframe_update(): | |
pass | |
block = gr.Blocks() | |
with block: | |
gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español | |
Massive Text Embedding Benchmark (MTEB) Leaderboard.** | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Languages**: 1 | |
- **Total Scores**: {NUM_SCORES} | |
- **Total Models**: {NUM_MODELS} | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Overall"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla General de Embeddings** | |
- **Métricas:** Varias, con sus respectivas medias. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
overall = general_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
overall, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Classification"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla Classification de Embeddings** | |
- **Métricas:** Spearman correlation based on cosine similarity. | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
classification = classification_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
classification, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("STS"): | |
with gr.Row(): | |
gr.Markdown(""" | |
**Tabla Classification de Embeddings** | |
- **Metricas:** . | |
- **Idioma:** Español | |
""") | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
sts = sts_dataframe_udpate() | |
data_overall = gr.components.Dataframe( | |
sts, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Clustering"): | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
sts = clustering_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
sts, | |
type="pandas", | |
wrap=True, | |
) | |
with gr.TabItem("Retrieval"): | |
with gr.Row(): | |
# Create and display a sample DataFrame | |
sts = retrieval_dataframe_update() | |
data_overall = gr.components.Dataframe( | |
sts, | |
type="pandas", | |
wrap=True, | |
) | |
block.launch() | |