Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import time | |
import pymongo | |
import certifi | |
import os | |
from dotenv import load_dotenv | |
import argparse | |
from dataclasses import dataclass | |
from langchain.vectorstores.chroma import Chroma | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain_openai.chat_models import ChatOpenAI | |
from langchain.prompts import ChatPromptTemplate | |
from deep_translator import GoogleTranslator | |
uri = "mongodb+srv://clementrof:t5fXqwpDQYFpvuCk@cluster0.rl5qhcj.mongodb.net/?retryWrites=true&w=majority" | |
# Create a new client and connect to the server | |
client = pymongo.MongoClient(uri, tlsCAFile=certifi.where()) | |
# Send a ping to confirm a successful connection | |
try: | |
client.admin.command('ping') | |
print("Pinged your deployment. You successfully connected to MongoDB!") | |
except Exception as e: | |
print(e) | |
# Access your database | |
db = client.get_database('camila') | |
records = db.info | |
# Load environment variables from .env | |
load_dotenv() | |
# Access the private key | |
private_key = os.getenv("OPENAI_API_KEY") | |
os.environ["OPENAI"] = "OPENAI_API_KEY" | |
CHROMA_PATH = "ch_chatbot" | |
####### F R ################ | |
PROMPT_TEMPLATE = """ | |
Réponds à la question en te basant sur le contexte suivant : | |
{context} | |
--- | |
Voici l'historique de cette conversation, utilise l'historique comme une mémoire: | |
{memory} | |
--- | |
Réponds à la question en se basant sur le contexte ci-dessus et parle de la même manière que le contexte. Ne dis pas que tu utilises le contexte pour répondre : {question} | |
""" | |
def message(question,memory): | |
# Prepare the DB. | |
embedding_function = OpenAIEmbeddings() | |
db = Chroma(persist_directory=CHROMA_PATH, | |
embedding_function=embedding_function) | |
# Search the DB. | |
results = db.similarity_search_with_relevance_scores(question, k=3) | |
if len(results) == 0 or results[0][1] < 0.7: | |
print("Unable to find matching results.") | |
return | |
context_text = "\n\n---\n\n".join( | |
[doc.page_content for doc, _score in results]) | |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=context_text, memory=memory, question=question) | |
print(prompt) | |
model = ChatOpenAI() | |
response_text = model.invoke(prompt) | |
content = response_text.content | |
return content | |
def Chat_call(question): | |
existing_user_doc = records.find_one({'ID': '1'}) | |
message_log = [] | |
messages = existing_user_doc['message'] | |
if len(messages)>1: | |
messages = messages[-1:] | |
message_log.extend(messages) | |
# Convert each dictionary into a string representation | |
message_strings = [f"{message['role']}: {message['content']}" for message in message_log] | |
# Join the strings with newline characters | |
memory = '\n'.join(message_strings) | |
response = message(question,memory) | |
records.update_one({'ID': '1'}, | |
{'$push':{'message': {'role': 'user', 'content': f'{question}'}}}) | |
records.update_one({'ID': '1'}, | |
{'$push':{'message': {'role': 'assistant', 'content': f'{response}'}}}) | |
return response | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.ClearButton([msg, chatbot]) | |
def respond(message, chat_history): | |
bot_message = Chat_call(message) | |
chat_history.append((message, bot_message)) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
if __name__ == "__main__": | |
demo.launch() | |