Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| """ | |
| HuggingFace Agents Course Unit 4 Final Assignment | |
| Multi-Agent System using LangGraph for GAIA Benchmark | |
| Goal: Achieve 30%+ score on Unit 4 API (GAIA benchmark subset) | |
| Architecture: Multi-agent LangGraph system with Qwen 2.5 models | |
| """ | |
| import os | |
| import gradio as gr | |
| from typing import Dict, Any | |
| from dotenv import load_dotenv | |
| # Load environment variables | |
| load_dotenv() | |
| class GAIAAgentSystem: | |
| """Main orchestrator for the GAIA benchmark multi-agent system""" | |
| def __init__(self): | |
| self.setup_environment() | |
| self.initialize_agents() | |
| def setup_environment(self): | |
| """Initialize environment and validate required settings""" | |
| self.hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
| if not self.hf_token: | |
| print("WARNING: HUGGINGFACE_TOKEN not set. Some features may be limited.") | |
| # Use optimized Qwen model tier configuration | |
| self.router_model = "Qwen/Qwen2.5-7B-Instruct" # Fast routing | |
| self.main_model = "Qwen/Qwen2.5-32B-Instruct" # Main reasoning | |
| self.complex_model = "Qwen/Qwen2.5-72B-Instruct" # Complex tasks | |
| def initialize_agents(self): | |
| """Initialize the multi-agent system components""" | |
| print("π Initializing GAIA Agent System...") | |
| print(f"π± Router Model: {self.router_model}") | |
| print(f"π§ Main Model: {self.main_model}") | |
| print(f"π¬ Complex Model: {self.complex_model}") | |
| # TODO: Initialize LangGraph workflow | |
| # TODO: Setup agent nodes and edges | |
| # TODO: Configure tools and capabilities | |
| def process_question(self, question: str, files: list = None) -> Dict[str, Any]: | |
| """Process a GAIA benchmark question through the multi-agent system""" | |
| if not question.strip(): | |
| return { | |
| "answer": "Please provide a question to process.", | |
| "confidence": 0.0, | |
| "reasoning": "No input provided", | |
| "agent_path": [] | |
| } | |
| # TODO: Route question through LangGraph workflow | |
| # TODO: Coordinate between multiple agents | |
| # TODO: Process any uploaded files | |
| # TODO: Return structured response | |
| # Placeholder response for Phase 1 | |
| return { | |
| "answer": f"Processing question: {question[:100]}...", | |
| "confidence": 0.5, | |
| "reasoning": "Phase 1 placeholder - agent system initializing", | |
| "agent_path": ["router", "main_agent"] | |
| } | |
| def create_gradio_interface(): | |
| """Create the Gradio web interface for HuggingFace Space deployment""" | |
| agent_system = GAIAAgentSystem() | |
| def process_with_files(question: str, files): | |
| """Handle question processing with optional file uploads""" | |
| file_list = files if files else [] | |
| result = agent_system.process_question(question, file_list) | |
| # Format output for display | |
| output = f""" | |
| **Answer:** {result['answer']} | |
| **Confidence:** {result['confidence']:.1%} | |
| **Reasoning:** {result['reasoning']} | |
| **Agent Path:** {' β '.join(result['agent_path'])} | |
| """ | |
| return output | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=process_with_files, | |
| inputs=[ | |
| gr.Textbox( | |
| label="GAIA Question", | |
| placeholder="Enter your question here...", | |
| lines=3 | |
| ), | |
| gr.Files( | |
| label="Upload Files (Optional)", | |
| file_count="multiple", | |
| file_types=["image", "audio", ".txt", ".csv", ".xlsx", ".py"] | |
| ) | |
| ], | |
| outputs=gr.Markdown(label="Agent Response"), | |
| title="π€ GAIA Benchmark Agent System", | |
| description=""" | |
| Multi-agent system for the GAIA benchmark using LangGraph framework. | |
| **Capabilities:** | |
| - Multi-step reasoning and planning | |
| - Web search and research | |
| - File processing (images, audio, documents) | |
| - Mathematical computation | |
| - Code execution and analysis | |
| **Target:** 30%+ accuracy on GAIA benchmark questions | |
| """, | |
| examples=[ | |
| ["What is the population of France?", None], | |
| ["Calculate the square root of 144", None], | |
| ["Analyze the uploaded image and describe what you see", None] | |
| ], | |
| theme=gr.themes.Soft() | |
| ) | |
| return interface | |
| def main(): | |
| """Main entry point""" | |
| print("π― HuggingFace Agents Course Unit 4 - Final Assignment") | |
| print("π Target: 30%+ score on GAIA benchmark") | |
| print("π§ Framework: LangGraph multi-agent system") | |
| print("π° Budget: Free tier models (~$0.10/month)") | |
| # Create and launch interface | |
| interface = create_gradio_interface() | |
| # Launch with appropriate settings for HuggingFace Space | |
| interface.launch( | |
| share=False, | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| show_error=True | |
| ) | |
| if __name__ == "__main__": | |
| main() |