Spaces:
Running
Running
metadata
title: FoodNet
emoji: π
colorFrom: purple
colorTo: purple
sdk: streamlit
app_file: foodnet.py
24-679 FoodNet Project
Authors
David Chuan-En Lin: chuanenl@cs.cmu.edu
Mitch Fogelson: mfogelso@andrew.cmu.edu
Sunny Yang: yundiy@andrew.cmu.edu
Shihao Xu: shihaoxu@andrew.cmu.edu
TODO
Must Have
- Cooking method (How to do this?) (TBD)
- Ingredients -> Recipe (Recipe Querey?) (Mitch)
- Cuisine Meta Data (Where to get) (TBD)
- Deployment on the cloud -> (David)
Like to have
- Images related ->
- User Studies
Moonshot
- Recipe Masking Prediction
Description
We wanted to help students and households in the Pittsburgh to reduce their food waste. We developed a model that suggests recipes based on current leftovers availible.
- Model -> Facebook's FastText
- Dataset -> Simplified 1M+ Recipes
Try WebApp
https://huggingface.co/spaces/chuanenlin/foodnet
Quick Start
- Clone repository
git clone git@github.com:chuanenlin/foodnet.git
- Move into repository
cd foodnet
(Optional Create conda environment)
- Install gdown
pip install gdown
- Download models
gdown https://drive.google.com/drive/folders/1LlQpd45E71dSfC8FgvIhJjQjqxnlBC9j -O ./models --folder
- Download datasets (Optional)
gdown https://drive.google.com/drive/folders/18aA3BFKqzkqNz5L4N5vN6bFnp8Ch2CQV -O ./data --folder
- Install Dependencies
pip install -r requirements.txt
- Run code
streamlit run foodnet.py
Args
Train new model
streamlit run foodnet.py -d/--dataset ['/PATH/TO/DATASET'] -t/--train True
Load alternative model
streamlit run foodnet.py --model ['/PATH/TO/MODEL']
Requirements
- python>=3.6
- gensim>=4.0.x
- streamlit
- gdown
- nltk
- pickle
- matplotlib
References
TODO