GraphGen / graphgen /models /partitioner /dfs_partitioner.py
github-actions[bot]
Auto-sync from demo at Tue Dec 16 08:21:05 UTC 2025
31086ae
import random
from collections.abc import Iterable
from typing import Any
from graphgen.bases import BaseGraphStorage, BasePartitioner
from graphgen.bases.datatypes import Community
NODE_UNIT: str = "n"
EDGE_UNIT: str = "e"
class DFSPartitioner(BasePartitioner):
"""
DFS partitioner that partitions the graph into communities of a fixed size.
1. Randomly choose a unit.
2. Random walk using DFS until the community reaches the max unit size.
(In GraphGen, a unit is defined as a node or an edge.)
"""
def partition(
self,
g: BaseGraphStorage,
max_units_per_community: int = 1,
**kwargs: Any,
) -> Iterable[Community]:
nodes = g.get_all_nodes()
edges = g.get_all_edges()
adj, _ = self._build_adjacency_list(nodes, edges)
used_n: set[str] = set()
used_e: set[frozenset[str]] = set()
units = [(NODE_UNIT, n[0]) for n in nodes] + [
(EDGE_UNIT, frozenset((u, v))) for u, v, _ in edges
]
random.shuffle(units)
for kind, seed in units:
if (kind == NODE_UNIT and seed in used_n) or (
kind == EDGE_UNIT and seed in used_e
):
continue
comm_n, comm_e = [], []
stack = [(kind, seed)]
cnt = 0
while stack and cnt < max_units_per_community:
k, it = stack.pop()
if k == NODE_UNIT:
if it in used_n:
continue
used_n.add(it)
comm_n.append(it)
cnt += 1
for nei in adj[it]:
e_key = frozenset((it, nei))
if e_key not in used_e:
stack.append((EDGE_UNIT, e_key))
break
else:
if it in used_e:
continue
used_e.add(it)
comm_e.append(tuple(it))
cnt += 1
# push neighboring nodes
for n in it:
if n not in used_n:
stack.append((NODE_UNIT, n))
if comm_n or comm_e:
yield Community(id=seed, nodes=comm_n, edges=comm_e)