Spaces:
Sleeping
Sleeping
import numpy as np | |
from pydub import AudioSegment | |
from typing import Any, List, Dict | |
from scipy.io.wavfile import write | |
import io | |
from modules.utils.audio import time_stretch, pitch_shift | |
from modules import generate_audio | |
from modules.normalization import text_normalize | |
import logging | |
import json | |
import random | |
from modules.speaker import Speaker | |
logger = logging.getLogger(__name__) | |
def audio_data_to_segment(audio_data, sr): | |
byte_io = io.BytesIO() | |
write(byte_io, rate=sr, data=audio_data) | |
byte_io.seek(0) | |
return AudioSegment.from_file(byte_io, format="wav") | |
def combine_audio_segments(audio_segments: list) -> AudioSegment: | |
combined_audio = AudioSegment.empty() | |
for segment in audio_segments: | |
combined_audio += segment | |
return combined_audio | |
def apply_prosody( | |
audio_segment: AudioSegment, rate: float, volume: float, pitch: float | |
) -> AudioSegment: | |
if rate != 1: | |
audio_segment = time_stretch(audio_segment, rate) | |
if volume != 0: | |
audio_segment += volume | |
if pitch != 0: | |
audio_segment = pitch_shift(audio_segment, pitch) | |
return audio_segment | |
def to_number(value, t, default=0): | |
try: | |
number = t(value) | |
return number | |
except (ValueError, TypeError) as e: | |
return default | |
class SynthesizeSegments: | |
batch_default_spk_seed = int(np.random.randint(0, 2**32 - 1)) | |
batch_default_infer_seed = int(np.random.randint(0, 2**32 - 1)) | |
def __init__(self, batch_size: int = 8): | |
self.batch_size = batch_size | |
def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]: | |
text = segment.get("text", "") | |
is_end = segment.get("is_end", False) | |
text = str(text).strip() | |
attrs = segment.get("attrs", {}) | |
spk = attrs.get("spk", "") | |
if isinstance(spk, str): | |
spk = int(spk) | |
seed = to_number(attrs.get("seed", ""), int, -1) | |
top_k = to_number(attrs.get("top_k", ""), int, None) | |
top_p = to_number(attrs.get("top_p", ""), float, None) | |
temp = to_number(attrs.get("temp", ""), float, None) | |
prompt1 = attrs.get("prompt1", "") | |
prompt2 = attrs.get("prompt2", "") | |
prefix = attrs.get("prefix", "") | |
disable_normalize = attrs.get("normalize", "") == "False" | |
params = { | |
"text": text, | |
"temperature": temp if temp is not None else 0.3, | |
"top_P": top_p if top_p is not None else 0.5, | |
"top_K": top_k if top_k is not None else 20, | |
"spk": spk if spk else -1, | |
"infer_seed": seed if seed else -1, | |
"prompt1": prompt1 if prompt1 else "", | |
"prompt2": prompt2 if prompt2 else "", | |
"prefix": prefix if prefix else "", | |
} | |
if not disable_normalize: | |
params["text"] = text_normalize(text, is_end=is_end) | |
# Set default values for spk and infer_seed | |
if params["spk"] == -1: | |
params["spk"] = self.batch_default_spk_seed | |
if params["infer_seed"] == -1: | |
params["infer_seed"] = self.batch_default_infer_seed | |
return params | |
def bucket_segments( | |
self, segments: List[Dict[str, Any]] | |
) -> List[List[Dict[str, Any]]]: | |
# Create a dictionary to hold buckets | |
buckets = {} | |
for segment in segments: | |
params = self.segment_to_generate_params(segment) | |
key_params = params | |
if isinstance(key_params.get("spk"), Speaker): | |
key_params["spk"] = str(key_params["spk"].id) | |
key = json.dumps( | |
{k: v for k, v in key_params.items() if k != "text"}, sort_keys=True | |
) | |
if params["spk"] == -1 or params["infer_seed"] == -1: | |
key = random.random() | |
buckets[key] = [segment] | |
else: | |
if key not in buckets: | |
buckets[key] = [] | |
buckets[key].append(segment) | |
# Convert dictionary to list of buckets | |
bucket_list = list(buckets.values()) | |
return bucket_list | |
def synthesize_segments(self, segments: List[Dict[str, Any]]) -> List[AudioSegment]: | |
audio_segments = [None] * len( | |
segments | |
) # Create a list with the same length as segments | |
buckets = self.bucket_segments(segments) | |
logger.debug(f"segments len: {len(segments)}") | |
logger.debug(f"bucket pool size: {len(buckets)}") | |
for bucket in buckets: | |
for i in range(0, len(bucket), self.batch_size): | |
batch = bucket[i : i + self.batch_size] | |
param_arr = [ | |
self.segment_to_generate_params(segment) for segment in batch | |
] | |
texts = [params["text"] for params in param_arr] | |
params = param_arr[0] # Use the first segment to get the parameters | |
audio_datas = generate_audio.generate_audio_batch( | |
texts=texts, | |
temperature=params["temperature"], | |
top_P=params["top_P"], | |
top_K=params["top_K"], | |
spk=params["spk"], | |
infer_seed=params["infer_seed"], | |
prompt1=params["prompt1"], | |
prompt2=params["prompt2"], | |
prefix=params["prefix"], | |
) | |
for idx, segment in enumerate(batch): | |
(sr, audio_data) = audio_datas[idx] | |
rate = float(segment.get("rate", "1.0")) | |
volume = float(segment.get("volume", "0")) | |
pitch = float(segment.get("pitch", "0")) | |
audio_segment = audio_data_to_segment(audio_data, sr) | |
audio_segment = apply_prosody(audio_segment, rate, volume, pitch) | |
original_index = segments.index( | |
segment | |
) # Get the original index of the segment | |
audio_segments[original_index] = ( | |
audio_segment # Place the audio_segment in the correct position | |
) | |
return audio_segments | |
def generate_audio_segment( | |
text: str, | |
spk: int = -1, | |
seed: int = -1, | |
top_p: float = 0.5, | |
top_k: int = 20, | |
temp: float = 0.3, | |
prompt1: str = "", | |
prompt2: str = "", | |
prefix: str = "", | |
enable_normalize=True, | |
is_end: bool = False, | |
) -> AudioSegment: | |
if enable_normalize: | |
text = text_normalize(text, is_end=is_end) | |
logger.debug(f"generate segment: {text}") | |
sample_rate, audio_data = generate_audio.generate_audio( | |
text=text, | |
temperature=temp if temp is not None else 0.3, | |
top_P=top_p if top_p is not None else 0.5, | |
top_K=top_k if top_k is not None else 20, | |
spk=spk if spk else -1, | |
infer_seed=seed if seed else -1, | |
prompt1=prompt1 if prompt1 else "", | |
prompt2=prompt2 if prompt2 else "", | |
prefix=prefix if prefix else "", | |
) | |
byte_io = io.BytesIO() | |
write(byte_io, sample_rate, audio_data) | |
byte_io.seek(0) | |
return AudioSegment.from_file(byte_io, format="wav") | |
def synthesize_segment(segment: Dict[str, Any]) -> AudioSegment | None: | |
if "break" in segment: | |
pause_segment = AudioSegment.silent(duration=segment["break"]) | |
return pause_segment | |
attrs = segment.get("attrs", {}) | |
text = segment.get("text", "") | |
is_end = segment.get("is_end", False) | |
text = str(text).strip() | |
if text == "": | |
return None | |
spk = attrs.get("spk", "") | |
if isinstance(spk, str): | |
spk = int(spk) | |
seed = to_number(attrs.get("seed", ""), int, -1) | |
top_k = to_number(attrs.get("top_k", ""), int, None) | |
top_p = to_number(attrs.get("top_p", ""), float, None) | |
temp = to_number(attrs.get("temp", ""), float, None) | |
prompt1 = attrs.get("prompt1", "") | |
prompt2 = attrs.get("prompt2", "") | |
prefix = attrs.get("prefix", "") | |
disable_normalize = attrs.get("normalize", "") == "False" | |
audio_segment = generate_audio_segment( | |
text, | |
enable_normalize=not disable_normalize, | |
spk=spk, | |
seed=seed, | |
top_k=top_k, | |
top_p=top_p, | |
temp=temp, | |
prompt1=prompt1, | |
prompt2=prompt2, | |
prefix=prefix, | |
is_end=is_end, | |
) | |
rate = float(attrs.get("rate", "1.0")) | |
volume = float(attrs.get("volume", "0")) | |
pitch = float(attrs.get("pitch", "0")) | |
audio_segment = apply_prosody(audio_segment, rate, volume, pitch) | |
return audio_segment | |
# 示例使用 | |
if __name__ == "__main__": | |
ssml_segments = [ | |
{ | |
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]", | |
"attrs": {"spk": 2, "temp": 0.1, "seed": 42}, | |
}, | |
{ | |
"text": "大🍉,一个大🍉,嘿,你的感觉真的很奇妙 [lbreak]", | |
"attrs": {"spk": 2, "temp": 0.1, "seed": 42}, | |
}, | |
{ | |
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]", | |
"attrs": {"spk": 2, "temp": 0.3, "seed": 42}, | |
}, | |
] | |
synthesizer = SynthesizeSegments(batch_size=2) | |
audio_segments = synthesizer.synthesize_segments(ssml_segments) | |
combined_audio = combine_audio_segments(audio_segments) | |
combined_audio.export("output.wav", format="wav") | |