Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import datetime | |
import math | |
import unittest | |
from transformers import XGLMConfig, is_torch_available | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMTokenizer | |
class XGLMModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
d_model=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
ffn_dim=37, | |
activation_function="gelu", | |
activation_dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = d_model | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.ffn_dim = ffn_dim | |
self.activation_function = activation_function | |
self.activation_dropout = activation_dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = None | |
self.bos_token_id = 0 | |
self.eos_token_id = 2 | |
self.pad_token_id = 1 | |
def get_large_model_config(self): | |
return XGLMConfig.from_pretrained("facebook/xglm-564M") | |
def prepare_config_and_inputs( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config(gradient_checkpointing=gradient_checkpointing) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
) | |
def get_config( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
return XGLMConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
attention_heads=self.num_attention_heads, | |
ffn_dim=self.ffn_dim, | |
activation_function=self.activation_function, | |
activation_dropout=self.activation_dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
gradient_checkpointing=gradient_checkpointing, | |
) | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
) = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_xglm_model(self, config, input_ids, input_mask, head_mask, *args): | |
model = XGLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, head_mask=head_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.num_hidden_layers) | |
def create_and_check_xglm_model_past(self, config, input_ids, input_mask, head_mask, *args): | |
model = XGLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
output, past = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_xglm_model_attention_mask_past(self, config, input_ids, input_mask, head_mask, *args): | |
model = XGLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = self.seq_length // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.zeros((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_xglm_model_past_large_inputs(self, config, input_ids, input_mask, head_mask, *args): | |
model = XGLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, attention_mask=input_mask, use_cache=True) | |
output, past = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_mask = ids_tensor((self.batch_size, 3), vocab_size=1) | |
# append to next input_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ | |
"last_hidden_state" | |
] | |
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, *args): | |
model = XGLMForCausalLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, head_mask, *args, gradient_checkpointing=False | |
): | |
model = XGLMForCausalLM(config) | |
model.to(torch_device) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def create_and_check_xglm_weight_initialization(self, config, *args): | |
model = XGLMModel(config) | |
model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) | |
for key in model.state_dict().keys(): | |
if "c_proj" in key and "weight" in key: | |
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) | |
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"head_mask": head_mask, | |
} | |
return config, inputs_dict | |
class XGLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (XGLMModel, XGLMForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (XGLMForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": XGLMModel, "text-generation": XGLMForCausalLM} if is_torch_available() else {} | |
) | |
fx_compatible = True | |
test_missing_keys = False | |
test_pruning = False | |
def setUp(self): | |
self.model_tester = XGLMModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_xglm_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xglm_model(*config_and_inputs) | |
def test_xglm_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xglm_model_past(*config_and_inputs) | |
def test_xglm_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xglm_model_attention_mask_past(*config_and_inputs) | |
def test_xglm_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xglm_model_past_large_inputs(*config_and_inputs) | |
def test_xglm_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_xglm_gradient_checkpointing(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) | |
def test_xglm_weight_initialization(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xglm_weight_initialization(*config_and_inputs) | |
def test_batch_generation(self): | |
model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
model.to(torch_device) | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
tokenizer.padding_side = "left" | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
inputs = tokenizer(sentences, return_tensors="pt", padding=True) | |
input_ids = inputs["input_ids"].to(torch_device) | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() | |
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little bit of a shy one, but he is very friendly", | |
"Today, I am going to share with you a few of my favorite things", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) | |
def test_model_from_pretrained(self): | |
for model_name in XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = XGLMModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class XGLMModelLanguageGenerationTest(unittest.TestCase): | |
def _test_lm_generate_xglm_helper( | |
self, | |
gradient_checkpointing=False, | |
verify_outputs=True, | |
): | |
model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
else: | |
model.gradient_checkpointing_disable() | |
model.to(torch_device) | |
input_ids = torch.tensor([[2, 268, 9865]], dtype=torch.long, device=torch_device) # The dog | |
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other | |
# fmt: off | |
expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] | |
# fmt: on | |
output_ids = model.generate(input_ids, do_sample=False, num_beams=1) | |
if verify_outputs: | |
self.assertListEqual(output_ids[0].tolist(), expected_output_ids) | |
def test_lm_generate_xglm(self): | |
self._test_lm_generate_xglm_helper() | |
def test_lm_generate_xglm_with_gradient_checkpointing(self): | |
self._test_lm_generate_xglm_helper(gradient_checkpointing=True) | |
def test_xglm_sample(self): | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
torch.manual_seed(0) | |
tokenized = tokenizer("Today is a nice day and", return_tensors="pt") | |
input_ids = tokenized.input_ids | |
output_ids = model.generate(input_ids, do_sample=True, num_beams=1) | |
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
EXPECTED_OUTPUT_STRS = [ | |
# TODO: remove this once we move to torch 2.0 | |
# torch 1.13.1 + cu116 | |
"Today is a nice day and the sun is shining. A nice day with warm rainy", | |
# torch 2.0 + cu117 | |
"Today is a nice day and the water is still cold. We just stopped off for some fresh", | |
] | |
self.assertIn(output_str, EXPECTED_OUTPUT_STRS) | |
def test_xglm_sample_max_time(self): | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
model.to(torch_device) | |
torch.manual_seed(0) | |
tokenized = tokenizer("Today is a nice day and", return_tensors="pt") | |
input_ids = tokenized.input_ids.to(torch_device) | |
MAX_TIME = 0.15 | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) | |
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) | |
start = datetime.datetime.now() | |
model.generate(input_ids, do_sample=False, max_time=None, max_length=256) | |
duration = datetime.datetime.now() - start | |
self.assertGreater(duration, datetime.timedelta(seconds=1.25 * MAX_TIME)) | |
def test_batched_nan_fp16(self): | |
model_name = "facebook/xglm-564M" | |
tokenizer = XGLMTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left") | |
model = XGLMForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda() | |
model = model.eval() | |
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt") | |
input_ids = batch["input_ids"].cuda() | |
attention_mask = batch["attention_mask"].cuda() | |
with torch.no_grad(): | |
outputs = model(input_ids, attention_mask=attention_mask) | |
self.assertFalse( | |
torch.isnan(outputs.logits[0]).any().item() | |
) # the first logits could contain NaNs if it fails | |