Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from transformers import FlaubertConfig, is_torch_available | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
FlaubertForMultipleChoice, | |
FlaubertForQuestionAnswering, | |
FlaubertForQuestionAnsweringSimple, | |
FlaubertForSequenceClassification, | |
FlaubertForTokenClassification, | |
FlaubertModel, | |
FlaubertWithLMHeadModel, | |
) | |
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
class FlaubertModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_lengths=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
gelu_activation=True, | |
sinusoidal_embeddings=False, | |
causal=False, | |
asm=False, | |
n_langs=2, | |
vocab_size=99, | |
n_special=0, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=12, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
summary_type="last", | |
use_proj=None, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_lengths = use_input_lengths | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.gelu_activation = gelu_activation | |
self.sinusoidal_embeddings = sinusoidal_embeddings | |
self.causal = causal | |
self.asm = asm | |
self.n_langs = n_langs | |
self.vocab_size = vocab_size | |
self.n_special = n_special | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.summary_type = summary_type | |
self.use_proj = use_proj | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
input_lengths = None | |
if self.use_input_lengths: | |
input_lengths = ( | |
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 | |
) # small variation of seq_length | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) | |
sequence_labels = None | |
token_labels = None | |
is_impossible_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
is_impossible_labels = ids_tensor([self.batch_size], 2).float() | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
) | |
def get_config(self): | |
return FlaubertConfig( | |
vocab_size=self.vocab_size, | |
n_special=self.n_special, | |
emb_dim=self.hidden_size, | |
n_layers=self.num_hidden_layers, | |
n_heads=self.num_attention_heads, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
gelu_activation=self.gelu_activation, | |
sinusoidal_embeddings=self.sinusoidal_embeddings, | |
asm=self.asm, | |
causal=self.causal, | |
n_langs=self.n_langs, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
summary_type=self.summary_type, | |
use_proj=self.use_proj, | |
) | |
def create_and_check_flaubert_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = FlaubertModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, lengths=input_lengths, langs=token_type_ids) | |
result = model(input_ids, langs=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_flaubert_lm_head( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = FlaubertWithLMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_flaubert_simple_qa( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = FlaubertForQuestionAnsweringSimple(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_flaubert_qa( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = FlaubertForQuestionAnswering(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
result_with_labels = model( | |
input_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
p_mask=input_mask, | |
) | |
result_with_labels = model( | |
input_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
) | |
(total_loss,) = result_with_labels.to_tuple() | |
result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) | |
(total_loss,) = result_with_labels.to_tuple() | |
self.parent.assertEqual(result_with_labels.loss.shape, ()) | |
self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) | |
self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) | |
self.parent.assertEqual( | |
result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) | |
) | |
self.parent.assertEqual( | |
result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) | |
) | |
self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) | |
def create_and_check_flaubert_sequence_classif( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = FlaubertForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
result = model(input_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
def create_and_check_flaubert_token_classif( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
config.num_labels = self.num_labels | |
model = FlaubertForTokenClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_flaubert_multiple_choice( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
config.num_choices = self.num_choices | |
model = FlaubertForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"lengths": input_lengths, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class FlaubertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
FlaubertModel, | |
FlaubertWithLMHeadModel, | |
FlaubertForQuestionAnswering, | |
FlaubertForQuestionAnsweringSimple, | |
FlaubertForSequenceClassification, | |
FlaubertForTokenClassification, | |
FlaubertForMultipleChoice, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": FlaubertModel, | |
"fill-mask": FlaubertWithLMHeadModel, | |
"question-answering": FlaubertForQuestionAnsweringSimple, | |
"text-classification": FlaubertForSequenceClassification, | |
"token-classification": FlaubertForTokenClassification, | |
"zero-shot": FlaubertForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "FillMaskPipelineTests": | |
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. | |
# `FlaubertConfig` was never used in pipeline tests: cannot create a simple tokenizer | |
return True | |
elif ( | |
pipeline_test_casse_name == "QAPipelineTests" | |
and tokenizer_name is not None | |
and not tokenizer_name.endswith("Fast") | |
): | |
# `QAPipelineTests` fails for a few models when the slower tokenizer are used. | |
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) | |
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer | |
return True | |
return False | |
# Flaubert has 2 QA models -> need to manually set the correct labels for one of them here | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "FlaubertForQuestionAnswering": | |
inputs_dict["start_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
inputs_dict["end_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = FlaubertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_flaubert_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_model(*config_and_inputs) | |
def test_flaubert_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs) | |
def test_flaubert_simple_qa(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs) | |
def test_flaubert_qa(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_qa(*config_and_inputs) | |
def test_flaubert_sequence_classif(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs) | |
def test_flaubert_token_classif(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs) | |
def test_flaubert_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlaubertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_torchscript_device_change(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# FlauBertForMultipleChoice behaves incorrectly in JIT environments. | |
if model_class == FlaubertForMultipleChoice: | |
return | |
config.torchscript = True | |
model = model_class(config=config) | |
inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
traced_model = torch.jit.trace( | |
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) | |
) | |
with tempfile.TemporaryDirectory() as tmp: | |
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt")) | |
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device) | |
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) | |
class FlaubertModelIntegrationTest(unittest.TestCase): | |
def test_inference_no_head_absolute_embedding(self): | |
model = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") | |
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 11, 768)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |