Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 HuggingFace Inc.. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import json | |
import logging | |
import os | |
import sys | |
from unittest.mock import patch | |
import torch | |
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining | |
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device | |
from transformers.utils import is_apex_available | |
SRC_DIRS = [ | |
os.path.join(os.path.dirname(__file__), dirname) | |
for dirname in [ | |
"text-generation", | |
"text-classification", | |
"token-classification", | |
"language-modeling", | |
"multiple-choice", | |
"question-answering", | |
"summarization", | |
"translation", | |
"image-classification", | |
"speech-recognition", | |
"audio-classification", | |
"speech-pretraining", | |
"image-pretraining", | |
"semantic-segmentation", | |
] | |
] | |
sys.path.extend(SRC_DIRS) | |
if SRC_DIRS is not None: | |
import run_audio_classification | |
import run_clm | |
import run_generation | |
import run_glue | |
import run_image_classification | |
import run_mae | |
import run_mlm | |
import run_ner | |
import run_qa as run_squad | |
import run_semantic_segmentation | |
import run_seq2seq_qa as run_squad_seq2seq | |
import run_speech_recognition_ctc | |
import run_speech_recognition_seq2seq | |
import run_summarization | |
import run_swag | |
import run_translation | |
import run_wav2vec2_pretraining_no_trainer | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
def get_setup_file(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-f") | |
args = parser.parse_args() | |
return args.f | |
def get_results(output_dir): | |
results = {} | |
path = os.path.join(output_dir, "all_results.json") | |
if os.path.exists(path): | |
with open(path, "r") as f: | |
results = json.load(f) | |
else: | |
raise ValueError(f"can't find {path}") | |
return results | |
def is_cuda_and_apex_available(): | |
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda" | |
return is_using_cuda and is_apex_available() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class ExamplesTests(TestCasePlus): | |
def test_run_glue(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_glue.py | |
--model_name_or_path distilbert-base-uncased | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv | |
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv | |
--do_train | |
--do_eval | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--learning_rate=1e-4 | |
--max_steps=10 | |
--warmup_steps=2 | |
--seed=42 | |
--max_seq_length=128 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_glue.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
def test_run_clm(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_clm.py | |
--model_name_or_path distilgpt2 | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--do_train | |
--do_eval | |
--block_size 128 | |
--per_device_train_batch_size 5 | |
--per_device_eval_batch_size 5 | |
--num_train_epochs 2 | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
""".split() | |
if torch.cuda.device_count() > 1: | |
# Skipping because there are not enough batches to train the model + would need a drop_last to work. | |
return | |
if torch_device != "cuda": | |
testargs.append("--no_cuda") | |
with patch.object(sys, "argv", testargs): | |
run_clm.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["perplexity"], 100) | |
def test_run_clm_config_overrides(self): | |
# test that config_overrides works, despite the misleading dumps of default un-updated | |
# config via tokenizer | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_clm.py | |
--model_type gpt2 | |
--tokenizer_name gpt2 | |
--train_file ./tests/fixtures/sample_text.txt | |
--output_dir {tmp_dir} | |
--config_overrides n_embd=10,n_head=2 | |
""".split() | |
if torch_device != "cuda": | |
testargs.append("--no_cuda") | |
logger = run_clm.logger | |
with patch.object(sys, "argv", testargs): | |
with CaptureLogger(logger) as cl: | |
run_clm.main() | |
self.assertIn('"n_embd": 10', cl.out) | |
self.assertIn('"n_head": 2', cl.out) | |
def test_run_mlm(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_mlm.py | |
--model_name_or_path distilroberta-base | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--do_train | |
--do_eval | |
--prediction_loss_only | |
--num_train_epochs=1 | |
""".split() | |
if torch_device != "cuda": | |
testargs.append("--no_cuda") | |
with patch.object(sys, "argv", testargs): | |
run_mlm.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["perplexity"], 42) | |
def test_run_ner(self): | |
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu | |
epochs = 7 if get_gpu_count() > 1 else 2 | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_ner.py | |
--model_name_or_path bert-base-uncased | |
--train_file tests/fixtures/tests_samples/conll/sample.json | |
--validation_file tests/fixtures/tests_samples/conll/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--do_train | |
--do_eval | |
--warmup_steps=2 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=2 | |
--num_train_epochs={epochs} | |
--seed 7 | |
""".split() | |
if torch_device != "cuda": | |
testargs.append("--no_cuda") | |
with patch.object(sys, "argv", testargs): | |
run_ner.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
self.assertLess(result["eval_loss"], 0.5) | |
def test_run_squad(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_qa.py | |
--model_name_or_path bert-base-uncased | |
--version_2_with_negative | |
--train_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_steps=10 | |
--warmup_steps=2 | |
--do_train | |
--do_eval | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_squad.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_f1"], 30) | |
self.assertGreaterEqual(result["eval_exact"], 30) | |
def test_run_squad_seq2seq(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_seq2seq_qa.py | |
--model_name_or_path t5-small | |
--context_column context | |
--question_column question | |
--answer_column answers | |
--version_2_with_negative | |
--train_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_steps=10 | |
--warmup_steps=2 | |
--do_train | |
--do_eval | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--predict_with_generate | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_squad_seq2seq.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_f1"], 30) | |
self.assertGreaterEqual(result["eval_exact"], 30) | |
def test_run_swag(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_swag.py | |
--model_name_or_path bert-base-uncased | |
--train_file tests/fixtures/tests_samples/swag/sample.json | |
--validation_file tests/fixtures/tests_samples/swag/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_steps=20 | |
--warmup_steps=2 | |
--do_train | |
--do_eval | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_swag.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.8) | |
def test_generation(self): | |
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"] | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
model_type, model_name = ( | |
"--model_type=gpt2", | |
"--model_name_or_path=sshleifer/tiny-gpt2", | |
) | |
with patch.object(sys, "argv", testargs + [model_type, model_name]): | |
result = run_generation.main() | |
self.assertGreaterEqual(len(result[0]), 10) | |
def test_run_summarization(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_summarization.py | |
--model_name_or_path t5-small | |
--train_file tests/fixtures/tests_samples/xsum/sample.json | |
--validation_file tests/fixtures/tests_samples/xsum/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_steps=50 | |
--warmup_steps=8 | |
--do_train | |
--do_eval | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--predict_with_generate | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_summarization.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_rouge1"], 10) | |
self.assertGreaterEqual(result["eval_rouge2"], 2) | |
self.assertGreaterEqual(result["eval_rougeL"], 7) | |
self.assertGreaterEqual(result["eval_rougeLsum"], 7) | |
def test_run_translation(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_translation.py | |
--model_name_or_path sshleifer/student_marian_en_ro_6_1 | |
--source_lang en | |
--target_lang ro | |
--train_file tests/fixtures/tests_samples/wmt16/sample.json | |
--validation_file tests/fixtures/tests_samples/wmt16/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_steps=50 | |
--warmup_steps=8 | |
--do_train | |
--do_eval | |
--learning_rate=3e-3 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--predict_with_generate | |
--source_lang en_XX | |
--target_lang ro_RO | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_translation.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_bleu"], 30) | |
def test_run_image_classification(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_image_classification.py | |
--output_dir {tmp_dir} | |
--model_name_or_path google/vit-base-patch16-224-in21k | |
--dataset_name hf-internal-testing/cats_vs_dogs_sample | |
--do_train | |
--do_eval | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 1 | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--dataloader_num_workers 16 | |
--metric_for_best_model accuracy | |
--max_steps 10 | |
--train_val_split 0.1 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_image_classification.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.8) | |
def test_run_speech_recognition_ctc(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_speech_recognition_ctc.py | |
--output_dir {tmp_dir} | |
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2 | |
--dataset_name hf-internal-testing/librispeech_asr_dummy | |
--dataset_config_name clean | |
--train_split_name validation | |
--eval_split_name validation | |
--do_train | |
--do_eval | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 1 | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--preprocessing_num_workers 16 | |
--max_steps 10 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_speech_recognition_ctc.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["eval_loss"], result["train_loss"]) | |
def test_run_speech_recognition_seq2seq(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_speech_recognition_seq2seq.py | |
--output_dir {tmp_dir} | |
--model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder | |
--dataset_name hf-internal-testing/librispeech_asr_dummy | |
--dataset_config_name clean | |
--train_split_name validation | |
--eval_split_name validation | |
--do_train | |
--do_eval | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 4 | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--preprocessing_num_workers 16 | |
--max_steps 10 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_speech_recognition_seq2seq.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["eval_loss"], result["train_loss"]) | |
def test_run_audio_classification(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_audio_classification.py | |
--output_dir {tmp_dir} | |
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2 | |
--dataset_name anton-l/superb_demo | |
--dataset_config_name ks | |
--train_split_name test | |
--eval_split_name test | |
--audio_column_name audio | |
--label_column_name label | |
--do_train | |
--do_eval | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 1 | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--num_train_epochs 10 | |
--max_steps 50 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_audio_classification.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["eval_loss"], result["train_loss"]) | |
def test_run_wav2vec2_pretraining(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_wav2vec2_pretraining_no_trainer.py | |
--output_dir {tmp_dir} | |
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2 | |
--dataset_name hf-internal-testing/librispeech_asr_dummy | |
--dataset_config_names clean | |
--dataset_split_names validation | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 4 | |
--per_device_eval_batch_size 4 | |
--preprocessing_num_workers 16 | |
--max_train_steps 2 | |
--validation_split_percentage 5 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_wav2vec2_pretraining_no_trainer.main() | |
model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir) | |
self.assertIsNotNone(model) | |
def test_run_vit_mae_pretraining(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_mae.py | |
--output_dir {tmp_dir} | |
--dataset_name hf-internal-testing/cats_vs_dogs_sample | |
--do_train | |
--do_eval | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 1 | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--dataloader_num_workers 16 | |
--metric_for_best_model accuracy | |
--max_steps 10 | |
--train_val_split 0.1 | |
--seed 42 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_mae.main() | |
model = ViTMAEForPreTraining.from_pretrained(tmp_dir) | |
self.assertIsNotNone(model) | |
def test_run_semantic_segmentation(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_semantic_segmentation.py | |
--output_dir {tmp_dir} | |
--dataset_name huggingface/semantic-segmentation-test-sample | |
--do_train | |
--do_eval | |
--remove_unused_columns False | |
--overwrite_output_dir True | |
--max_steps 10 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--seed 32 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
with patch.object(sys, "argv", testargs): | |
run_semantic_segmentation.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1) | |