Li
add transformers
455a40f
raw
history blame
2.11 kB
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import Seq2SeqDataset, pickle_save
def save_len_file(
tokenizer_name, data_dir, max_source_length=1024, max_target_length=1024, consider_target=False, **kwargs
):
"""Save max(src_len, tgt_len) for each example to allow dynamic batching."""
tok = AutoTokenizer.from_pretrained(tokenizer_name)
train_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="train", **kwargs)
pad = tok.pad_token_id
def get_lens(ds):
dl = tqdm(
DataLoader(ds, batch_size=512, num_workers=8, shuffle=False, collate_fn=ds.collate_fn),
desc=str(ds.len_file),
)
max_lens = []
for batch in dl:
src_lens = batch["input_ids"].ne(pad).sum(1).tolist()
tgt_lens = batch["labels"].ne(pad).sum(1).tolist()
if consider_target:
for src, tgt in zip(src_lens, tgt_lens):
max_lens.append(max(src, tgt))
else:
max_lens.extend(src_lens)
return max_lens
train_lens = get_lens(train_ds)
val_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="val", **kwargs)
val_lens = get_lens(val_ds)
pickle_save(train_lens, train_ds.len_file)
pickle_save(val_lens, val_ds.len_file)
if __name__ == "__main__":
fire.Fire(save_len_file)