Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import os | |
import sys | |
from pathlib import Path | |
from unittest.mock import patch | |
from parameterized import parameterized | |
from run_eval import run_generate | |
from run_eval_search import run_search | |
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow | |
from utils import ROUGE_KEYS | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
def _dump_articles(path: Path, articles: list): | |
content = "\n".join(articles) | |
Path(path).open("w").writelines(content) | |
T5_TINY = "patrickvonplaten/t5-tiny-random" | |
BART_TINY = "sshleifer/bart-tiny-random" | |
MBART_TINY = "sshleifer/tiny-mbart" | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks | |
class TestTheRest(TestCasePlus): | |
def run_eval_tester(self, model): | |
input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source" | |
output_file_name = input_file_name.parent / "utest_output.txt" | |
assert not output_file_name.exists() | |
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] | |
_dump_articles(input_file_name, articles) | |
score_path = str(Path(self.get_auto_remove_tmp_dir()) / "scores.json") | |
task = "translation_en_to_de" if model == T5_TINY else "summarization" | |
testargs = f""" | |
run_eval_search.py | |
{model} | |
{input_file_name} | |
{output_file_name} | |
--score_path {score_path} | |
--task {task} | |
--num_beams 2 | |
--length_penalty 2.0 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_generate() | |
assert Path(output_file_name).exists() | |
# os.remove(Path(output_file_name)) | |
# test one model to quickly (no-@slow) catch simple problems and do an | |
# extensive testing of functionality with multiple models as @slow separately | |
def test_run_eval(self): | |
self.run_eval_tester(T5_TINY) | |
# any extra models should go into the list here - can be slow | |
def test_run_eval_slow(self, model): | |
self.run_eval_tester(model) | |
# testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart) | |
def test_run_eval_search(self, model): | |
input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source" | |
output_file_name = input_file_name.parent / "utest_output.txt" | |
assert not output_file_name.exists() | |
text = { | |
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], | |
"de": [ | |
"Maschinelles Lernen ist großartig, oder?", | |
"Ich esse gerne Bananen", | |
"Morgen ist wieder ein toller Tag!", | |
], | |
} | |
tmp_dir = Path(self.get_auto_remove_tmp_dir()) | |
score_path = str(tmp_dir / "scores.json") | |
reference_path = str(tmp_dir / "val.target") | |
_dump_articles(input_file_name, text["en"]) | |
_dump_articles(reference_path, text["de"]) | |
task = "translation_en_to_de" if model == T5_TINY else "summarization" | |
testargs = f""" | |
run_eval_search.py | |
{model} | |
{str(input_file_name)} | |
{str(output_file_name)} | |
--score_path {score_path} | |
--reference_path {reference_path} | |
--task {task} | |
""".split() | |
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"]) | |
with patch.object(sys, "argv", testargs): | |
with CaptureStdout() as cs: | |
run_search() | |
expected_strings = [" num_beams | length_penalty", model, "Best score args"] | |
un_expected_strings = ["Info"] | |
if "translation" in task: | |
expected_strings.append("bleu") | |
else: | |
expected_strings.extend(ROUGE_KEYS) | |
for w in expected_strings: | |
assert w in cs.out | |
for w in un_expected_strings: | |
assert w not in cs.out | |
assert Path(output_file_name).exists() | |
os.remove(Path(output_file_name)) | |