multimodal / transformers /examples /legacy /seq2seq /old_test_seq2seq_examples.py
Li
add transformers
455a40f
raw
history blame
4.99 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class TestTheRest(TestCasePlus):
def run_eval_tester(self, model):
input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
output_file_name = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(input_file_name, articles)
score_path = str(Path(self.get_auto_remove_tmp_dir()) / "scores.json")
task = "translation_en_to_de" if model == T5_TINY else "summarization"
testargs = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(sys, "argv", testargs):
run_generate()
assert Path(output_file_name).exists()
# os.remove(Path(output_file_name))
# test one model to quickly (no-@slow) catch simple problems and do an
# extensive testing of functionality with multiple models as @slow separately
def test_run_eval(self):
self.run_eval_tester(T5_TINY)
# any extra models should go into the list here - can be slow
@parameterized.expand([BART_TINY, MBART_TINY])
@slow
def test_run_eval_slow(self, model):
self.run_eval_tester(model)
# testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart)
@parameterized.expand([T5_TINY, MBART_TINY])
@slow
def test_run_eval_search(self, model):
input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
output_file_name = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
text = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
tmp_dir = Path(self.get_auto_remove_tmp_dir())
score_path = str(tmp_dir / "scores.json")
reference_path = str(tmp_dir / "val.target")
_dump_articles(input_file_name, text["en"])
_dump_articles(reference_path, text["de"])
task = "translation_en_to_de" if model == T5_TINY else "summarization"
testargs = f"""
run_eval_search.py
{model}
{str(input_file_name)}
{str(output_file_name)}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"])
with patch.object(sys, "argv", testargs):
with CaptureStdout() as cs:
run_search()
expected_strings = [" num_beams | length_penalty", model, "Best score args"]
un_expected_strings = ["Info"]
if "translation" in task:
expected_strings.append("bleu")
else:
expected_strings.extend(ROUGE_KEYS)
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(output_file_name).exists()
os.remove(Path(output_file_name))