Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Fine-tuning the library models for question-answering.""" | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForQuestionAnswering, | |
AutoTokenizer, | |
DataCollatorWithPadding, | |
HfArgumentParser, | |
SquadDataset, | |
Trainer, | |
TrainingArguments, | |
) | |
from transformers import SquadDataTrainingArguments as DataTrainingArguments | |
from transformers.trainer_utils import is_main_process | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) | |
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, | |
# or just modify its tokenizer_config.json. | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | |
" --overwrite_output_dir to overcome." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
training_args.fp16, | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Prepare Question-Answering task | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling | |
) | |
model = AutoModelForQuestionAnswering.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
) | |
# Get datasets | |
is_language_sensitive = hasattr(model.config, "lang2id") | |
train_dataset = ( | |
SquadDataset( | |
data_args, tokenizer=tokenizer, is_language_sensitive=is_language_sensitive, cache_dir=model_args.cache_dir | |
) | |
if training_args.do_train | |
else None | |
) | |
eval_dataset = ( | |
SquadDataset( | |
data_args, | |
tokenizer=tokenizer, | |
mode="dev", | |
is_language_sensitive=is_language_sensitive, | |
cache_dir=model_args.cache_dir, | |
) | |
if training_args.do_eval | |
else None | |
) | |
# Data collator | |
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
data_collator=data_collator, | |
) | |
# Training | |
if training_args.do_train: | |
trainer.train( | |
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | |
) | |
trainer.save_model() | |
# For convenience, we also re-save the tokenizer to the same directory, | |
# so that you can share your model easily on huggingface.co/models =) | |
if trainer.is_world_master(): | |
tokenizer.save_pretrained(training_args.output_dir) | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |