Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import re | |
import shutil | |
import sys | |
import tempfile | |
import unittest | |
import black | |
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) | |
sys.path.append(os.path.join(git_repo_path, "utils")) | |
import check_copies # noqa: E402 | |
# This is the reference code that will be used in the tests. | |
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. | |
REFERENCE_CODE = """ def __init__(self, config): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
""" | |
class CopyCheckTester(unittest.TestCase): | |
def setUp(self): | |
self.transformer_dir = tempfile.mkdtemp() | |
os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) | |
check_copies.TRANSFORMER_PATH = self.transformer_dir | |
shutil.copy( | |
os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"), | |
os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), | |
) | |
def tearDown(self): | |
check_copies.TRANSFORMER_PATH = "src/transformers" | |
shutil.rmtree(self.transformer_dir) | |
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None): | |
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code | |
if overwrite_result is not None: | |
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result | |
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119) | |
code = black.format_str(code, mode=mode) | |
fname = os.path.join(self.transformer_dir, "new_code.py") | |
with open(fname, "w", newline="\n") as f: | |
f.write(code) | |
if overwrite_result is None: | |
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0) | |
else: | |
check_copies.is_copy_consistent(f.name, overwrite=True) | |
with open(fname, "r") as f: | |
self.assertTrue(f.read(), expected) | |
def test_find_code_in_transformers(self): | |
code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") | |
self.assertEqual(code, REFERENCE_CODE) | |
def test_is_copy_consistent(self): | |
# Base copy consistency | |
self.check_copy_consistency( | |
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", | |
"BertLMPredictionHead", | |
REFERENCE_CODE + "\n", | |
) | |
# With no empty line at the end | |
self.check_copy_consistency( | |
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", | |
"BertLMPredictionHead", | |
REFERENCE_CODE, | |
) | |
# Copy consistency with rename | |
self.check_copy_consistency( | |
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", | |
"TestModelLMPredictionHead", | |
re.sub("Bert", "TestModel", REFERENCE_CODE), | |
) | |
# Copy consistency with a really long name | |
long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" | |
self.check_copy_consistency( | |
f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", | |
f"{long_class_name}LMPredictionHead", | |
re.sub("Bert", long_class_name, REFERENCE_CODE), | |
) | |
# Copy consistency with overwrite | |
self.check_copy_consistency( | |
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", | |
"TestModelLMPredictionHead", | |
REFERENCE_CODE, | |
overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE), | |
) | |
def test_convert_to_localized_md(self): | |
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] | |
md_list = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" | |
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" | |
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" | |
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." | |
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," | |
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" | |
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" | |
" method has been applied to compress GPT2 into" | |
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" | |
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," | |
" Multilingual BERT into" | |
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" | |
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" | |
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" | |
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" | |
" Luong, Quoc V. Le, Christopher D. Manning." | |
) | |
localized_md_list = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
) | |
converted_md_list_sample = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." | |
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" | |
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" | |
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" | |
" method has been applied to compress GPT2 into" | |
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" | |
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," | |
" Multilingual BERT into" | |
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" | |
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" | |
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" | |
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," | |
" Christopher D. Manning 发布。\n" | |
) | |
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( | |
md_list, localized_md_list, localized_readme["format_model_list"] | |
) | |
self.assertFalse(num_models_equal) | |
self.assertEqual(converted_md_list, converted_md_list_sample) | |
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( | |
md_list, converted_md_list, localized_readme["format_model_list"] | |
) | |
# Check whether the number of models is equal to README.md after conversion. | |
self.assertTrue(num_models_equal) | |
link_changed_md_list = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" | |
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" | |
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" | |
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." | |
) | |
link_unchanged_md_list = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" | |
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
) | |
converted_md_list_sample = ( | |
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
) | |
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( | |
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"] | |
) | |
# Check if the model link is synchronized. | |
self.assertEqual(converted_md_list, converted_md_list_sample) | |