multimodal / transformers /tests /trainer /test_trainer_utils.py
Li
add transformers
455a40f
raw
history blame
21.7 kB
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
from transformers.data.data_collator import default_data_collator
from transformers.testing_utils import require_accelerate, require_torch
from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import IterableDataset
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.tokenization_utils_base import BatchEncoding
from transformers.trainer_pt_utils import (
DistributedLengthGroupedSampler,
DistributedSamplerWithLoop,
DistributedTensorGatherer,
IterableDatasetShard,
LabelSmoother,
LengthGroupedSampler,
SequentialDistributedSampler,
ShardSampler,
get_parameter_names,
numpy_pad_and_concatenate,
torch_pad_and_concatenate,
)
class TstLayer(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear1 = nn.Linear(hidden_size, hidden_size)
self.ln1 = nn.LayerNorm(hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.ln2 = nn.LayerNorm(hidden_size)
self.bias = nn.Parameter(torch.zeros(hidden_size))
def forward(self, x):
h = self.ln1(nn.functional.relu(self.linear1(x)))
h = nn.functional.relu(self.linear2(x))
return self.ln2(x + h + self.bias)
class RandomIterableDataset(IterableDataset):
# For testing, an iterable dataset of random length
def __init__(self, p_stop=0.01, max_length=1000):
self.p_stop = p_stop
self.max_length = max_length
self.generator = torch.Generator()
def __iter__(self):
count = 0
stop = False
while not stop and count < self.max_length:
yield count
count += 1
number = torch.rand(1, generator=self.generator).item()
stop = number < self.p_stop
@require_torch
class TrainerUtilsTest(unittest.TestCase):
def test_distributed_tensor_gatherer(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays(predictions[indices])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result, predictions))
# With nested tensors
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
result = gatherer.finalize()
self.assertTrue(isinstance(result, list))
self.assertEqual(len(result), 2)
self.assertTrue(isinstance(result[1], list))
self.assertEqual(len(result[1]), 2)
self.assertTrue(np.array_equal(result[0], predictions))
self.assertTrue(np.array_equal(result[1][0], predictions))
self.assertTrue(np.array_equal(result[1][1], predictions))
def test_distributed_tensor_gatherer_different_shapes(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
sequence_lengths = [8, 10, 13]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays(predictions[indices, :seq_length])
result = gatherer.finalize()
# Remove the extra samples added at the end for a round multiple of num processes.
actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))
# With nested tensors
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
result = gatherer.finalize()
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
self.assertTrue(np.array_equal(result[1], predictions))
# Check if works if varying seq_length is second
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result[0], predictions))
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))
def test_label_smoothing(self):
epsilon = 0.1
num_labels = 12
random_logits = torch.randn(4, 5, num_labels)
random_labels = torch.randint(0, num_labels, (4, 5))
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
# With a few -100 labels
random_labels[0, 1] = -100
random_labels[2, 1] = -100
random_labels[2, 3] = -100
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
# Mask the log probs with the -100 labels
log_probs[0, 1] = 0.0
log_probs[2, 1] = 0.0
log_probs[2, 3] = 0.0
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
def test_group_by_length(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices = list(LengthGroupedSampler(4, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices), list(range(100)))
def test_group_by_length_with_dict(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append({"input_ids": input_ids})
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_group_by_length_with_batch_encoding(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append(BatchEncoding({"input_ids": input_ids}))
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_distributed_length_grouped(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths))
indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices_process_0[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100)))
def test_get_parameter_names(self):
model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
# fmt: off
self.assertEqual(
get_parameter_names(model, [nn.LayerNorm]),
['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
)
# fmt: on
def test_distributed_sampler_with_loop(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)
# Set seeds
shard1.set_epoch(0)
shard2.set_epoch(0)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = []
for sample1, sample2 in zip(samples1, samples2):
total += [sample1, sample2]
self.assertEqual(set(total[:length]), set(dataset))
self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
def test_sequential_distributed_sampler(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
# With a batch_size passed
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
# Set the seed for the base dataset to get the proper reference.
dataset.generator.manual_seed(epoch)
reference = list(dataset)
shards = [
IterableDatasetShard(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard in shards:
shard.set_epoch(epoch)
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
for shard in shards:
# All shards know the total number of samples
self.assertEqual(shard.num_examples, len(reference))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
# Check equivalence between IterableDataset and ShardSampler
dataset.generator.manual_seed(epoch)
reference = list(dataset)
sampler_shards = [
ShardSampler(
reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard, sampler_shard in zip(shard_lists, sampler_shards):
self.assertListEqual(shard, list(sampler_shard))
def test_iterable_dataset_shard(self):
dataset = RandomIterableDataset()
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42)
def test_iterable_dataset_shard_with_length(self):
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i)
for i in range(2)
]
# Build expected shards: each process will have batches of size 4 until there is not enough elements to
# form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4)
expected_shards = [[], []]
current_shard = 0
for i in range(0, 96, 4):
expected_shards[current_shard].extend(list(range(i, i + 4)))
current_shard = 1 - current_shard
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i)
for i in range(2)
]
# When drop_last=False, we get two last full batches by looping back to the beginning.
expected_shards[0].extend(list(range(96, 100)))
expected_shards[1].extend(list(range(0, 4)))
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2):
shards = [
ShardSampler(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
reference = copy.copy(dataset)
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
def test_shard_sampler(self):
for n_elements in [64, 123]:
dataset = list(range(n_elements))
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3)
@require_accelerate
def test_executable_batch_size(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
if batch_size > 16:
raise RuntimeError("CUDA out of memory.")
mock_training_loop_function()
self.assertEqual(batch_sizes, [64, 32, 16])
@require_accelerate
def test_executable_batch_size_no_search(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
mock_training_loop_function()
self.assertEqual(batch_sizes, [64])
@require_accelerate
def test_executable_batch_size_with_error(self):
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
raise RuntimeError("CUDA out of memory.")
with self.assertRaises(RuntimeError) as cm:
mock_training_loop_function()
self.assertEqual("CUDA out of memory", cm.args[0])
def test_pad_and_concatenate_with_1d(self):
"""Tests whether pad_and_concatenate works with scalars."""
array1 = 1.0
array2 = 2.0
result = numpy_pad_and_concatenate(array1, array2)
self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result))
tensor1 = torch.tensor(1.0)
tensor2 = torch.tensor(2.0)
result = torch_pad_and_concatenate(tensor1, tensor2)
self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0])))
def test_remove_columns_collator(self):
class MockLogger:
def __init__(self) -> None:
self.called = 0
def info(self, msg):
self.called += 1
self.last_msg = msg
data_batch = [
{"col1": 1, "col2": 2, "col3": 3},
{"col1": 1, "col2": 2, "col3": 3},
]
logger = MockLogger()
remove_columns_collator = RemoveColumnsCollator(
default_data_collator, ["col1", "col2"], logger, "model", "training"
)
self.assertNotIn("col3", remove_columns_collator(data_batch))
# check that the logging message is printed out only once
remove_columns_collator(data_batch)
remove_columns_collator(data_batch)
self.assertEqual(logger.called, 1)
self.assertIn("col3", logger.last_msg)