multimodal / transformers /tests /trainer /test_trainer_tpu.py
Li
add transformers
455a40f
raw
history blame
4.02 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This test is meant to be run in on an instance with TPUs like this:
#
# python examples/pytorch/xla_spawn.py --num_cores=8 tests/test_trainer_tpu.py
#
# Replace 8 with the number of TPU cores you have.
#
import sys
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.utils import logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class DummyDataset(Dataset):
def __init__(self, length: int = 101):
self.length = length
def __len__(self):
return self.length
def __getitem__(self, i) -> int:
return i
class DummyDataCollator:
def __call__(self, features):
return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
# Add some (unused) params otherwise DDP will complain.
self.fc = nn.Linear(120, 80)
def forward(self, input_ids, labels=None):
if labels is not None:
return torch.tensor(0.0, device=input_ids.device), input_ids
else:
return input_ids
def main():
parser = HfArgumentParser((TrainingArguments,))
sys.argv += ["--output_dir", "./examples"]
training_args = parser.parse_args_into_dataclasses()[0]
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, "
f"tpu_num_cores: {training_args.tpu_num_cores}",
)
# Essentially, what we want to verify in the distributed case is
# that we get all samples back, in the right order.
# (this is crucial for prediction for instance)
for dataset_length in [1001, 256, 15]:
dataset = DummyDataset(dataset_length)
def compute_metrics(p: EvalPrediction) -> Dict:
sequential = list(range(len(dataset)))
success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
return {"success": success}
trainer = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
metrics = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
p = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
trainer.args.eval_accumulation_steps = 2
metrics = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
p = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
trainer.args.eval_accumulation_steps = None
logger.info("🔥 All distributed tests successful")
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()