Spaces:
Runtime error
Runtime error
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import ( | |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
PreTrainedTokenizer, | |
is_vision_available, | |
) | |
from transformers.pipelines import ImageClassificationPipeline, pipeline | |
from transformers.testing_utils import ( | |
is_pipeline_test, | |
nested_simplify, | |
require_tf, | |
require_torch, | |
require_torch_or_tf, | |
require_vision, | |
slow, | |
) | |
from .test_pipelines_common import ANY | |
if is_vision_available(): | |
from PIL import Image | |
else: | |
class Image: | |
def open(*args, **kwargs): | |
pass | |
class ImageClassificationPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING | |
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2) | |
examples = [ | |
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
] | |
return image_classifier, examples | |
def run_pipeline_test(self, image_classifier, examples): | |
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
self.assertEqual( | |
outputs, | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
) | |
import datasets | |
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
# Accepts URL + PIL.Image + lists | |
outputs = image_classifier( | |
[ | |
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
# RGBA | |
dataset[0]["file"], | |
# LA | |
dataset[1]["file"], | |
# L | |
dataset[2]["file"], | |
] | |
) | |
self.assertEqual( | |
outputs, | |
[ | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
], | |
) | |
def test_small_model_pt(self): | |
small_model = "hf-internal-testing/tiny-random-vit" | |
image_classifier = pipeline("image-classification", model=small_model) | |
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
) | |
outputs = image_classifier( | |
[ | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
], | |
top_k=2, | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
], | |
) | |
def test_small_model_tf(self): | |
small_model = "hf-internal-testing/tiny-random-vit" | |
image_classifier = pipeline("image-classification", model=small_model, framework="tf") | |
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
) | |
outputs = image_classifier( | |
[ | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
"http://images.cocodataset.org/val2017/000000039769.jpg", | |
], | |
top_k=2, | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], | |
], | |
) | |
def test_custom_tokenizer(self): | |
tokenizer = PreTrainedTokenizer() | |
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping | |
image_classifier = pipeline( | |
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer | |
) | |
self.assertIs(image_classifier.tokenizer, tokenizer) | |
def test_perceiver(self): | |
# Perceiver is not tested by `run_pipeline_test` properly. | |
# That is because the type of feature_extractor and model preprocessor need to be kept | |
# in sync, which is not the case in the current design | |
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv") | |
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.4385, "label": "tabby, tabby cat"}, | |
{"score": 0.321, "label": "tiger cat"}, | |
{"score": 0.0502, "label": "Egyptian cat"}, | |
{"score": 0.0137, "label": "crib, cot"}, | |
{"score": 0.007, "label": "radiator"}, | |
], | |
) | |
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier") | |
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.5658, "label": "tabby, tabby cat"}, | |
{"score": 0.1309, "label": "tiger cat"}, | |
{"score": 0.0722, "label": "Egyptian cat"}, | |
{"score": 0.0707, "label": "remote control, remote"}, | |
{"score": 0.0082, "label": "computer keyboard, keypad"}, | |
], | |
) | |
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned") | |
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.3022, "label": "tabby, tabby cat"}, | |
{"score": 0.2362, "label": "Egyptian cat"}, | |
{"score": 0.1856, "label": "tiger cat"}, | |
{"score": 0.0324, "label": "remote control, remote"}, | |
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"}, | |
], | |
) | |