Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available | |
from transformers.pipelines import pipeline | |
from transformers.pipelines.document_question_answering import apply_tesseract | |
from transformers.testing_utils import ( | |
is_pipeline_test, | |
nested_simplify, | |
require_detectron2, | |
require_pytesseract, | |
require_tf, | |
require_torch, | |
require_vision, | |
slow, | |
) | |
from .test_pipelines_common import ANY | |
if is_vision_available(): | |
from PIL import Image | |
from transformers.image_utils import load_image | |
else: | |
class Image: | |
def open(*args, **kwargs): | |
pass | |
def load_image(_): | |
return None | |
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, | |
# so we can expect it to be available. | |
INVOICE_URL = ( | |
"https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" | |
) | |
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
dqa_pipeline = pipeline( | |
"document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor | |
) | |
image = INVOICE_URL | |
word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) | |
question = "What is the placebo?" | |
examples = [ | |
{ | |
"image": load_image(image), | |
"question": question, | |
}, | |
{ | |
"image": image, | |
"question": question, | |
}, | |
{ | |
"image": image, | |
"question": question, | |
"word_boxes": word_boxes, | |
}, | |
] | |
return dqa_pipeline, examples | |
def run_pipeline_test(self, dqa_pipeline, examples): | |
outputs = dqa_pipeline(examples, top_k=2) | |
self.assertEqual( | |
outputs, | |
[ | |
[ | |
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, | |
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, | |
] | |
] | |
* 3, | |
) | |
def test_small_model_pt(self): | |
dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2") | |
image = INVOICE_URL | |
question = "How many cats are there?" | |
expected_output = [ | |
{"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, | |
{"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, | |
] | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) | |
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) | |
# This image does not detect ANY text in it, meaning layoutlmv2 should fail. | |
# Empty answer probably | |
image = "./tests/fixtures/tests_samples/COCO/000000039769.png" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual(outputs, []) | |
# We can optionnally pass directly the words and bounding boxes | |
image = "./tests/fixtures/tests_samples/COCO/000000039769.png" | |
words = [] | |
boxes = [] | |
outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2) | |
self.assertEqual(outputs, []) | |
# TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented | |
# @require_torch | |
# def test_small_model_pt_donut(self): | |
# dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut") | |
# # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut") | |
# image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png" | |
# question = "How many cats are there?" | |
# | |
# outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
# self.assertEqual( | |
# nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] | |
# ) | |
def test_large_model_pt(self): | |
dqa_pipeline = pipeline( | |
"document-question-answering", | |
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", | |
revision="9977165", | |
) | |
image = INVOICE_URL | |
question = "What is the invoice number?" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
outputs = dqa_pipeline( | |
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[ | |
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
] | |
* 2, | |
) | |
def test_large_model_pt_chunk(self): | |
dqa_pipeline = pipeline( | |
"document-question-answering", | |
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", | |
revision="9977165", | |
max_seq_len=50, | |
) | |
image = INVOICE_URL | |
question = "What is the invoice number?" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, | |
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, | |
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
outputs = dqa_pipeline( | |
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[ | |
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, | |
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, | |
] | |
] | |
* 2, | |
) | |
def test_large_model_pt_layoutlm(self): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True | |
) | |
dqa_pipeline = pipeline( | |
"document-question-answering", | |
model="impira/layoutlm-document-qa", | |
tokenizer=tokenizer, | |
revision="3dc6de3", | |
) | |
image = INVOICE_URL | |
question = "What is the invoice number?" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, | |
], | |
) | |
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, | |
], | |
) | |
outputs = dqa_pipeline( | |
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[ | |
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, | |
] | |
] | |
* 2, | |
) | |
word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) | |
# This model should also work if `image` is set to None | |
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, | |
], | |
) | |
def test_large_model_pt_layoutlm_chunk(self): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True | |
) | |
dqa_pipeline = pipeline( | |
"document-question-answering", | |
model="impira/layoutlm-document-qa", | |
tokenizer=tokenizer, | |
revision="3dc6de3", | |
max_seq_len=50, | |
) | |
image = INVOICE_URL | |
question = "What is the invoice number?" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
outputs = dqa_pipeline( | |
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[ | |
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, | |
] | |
] | |
* 2, | |
) | |
word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) | |
# This model should also work if `image` is set to None | |
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, | |
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, | |
], | |
) | |
def test_large_model_pt_donut(self): | |
dqa_pipeline = pipeline( | |
"document-question-answering", | |
model="naver-clova-ix/donut-base-finetuned-docvqa", | |
tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"), | |
feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", | |
) | |
image = INVOICE_URL | |
question = "What is the invoice number?" | |
outputs = dqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}]) | |
def test_small_model_tf(self): | |
pass | |