multimodal / transformers /tests /pipelines /test_pipelines_document_question_answering.py
Li
add transformers
455a40f
raw
history blame
13.4 kB
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectron2,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def load_image(_):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
INVOICE_URL = (
"https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
)
@is_pipeline_test
@require_torch
@require_vision
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def get_test_pipeline(self, model, tokenizer, processor):
dqa_pipeline = pipeline(
"document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor
)
image = INVOICE_URL
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
question = "What is the placebo?"
examples = [
{
"image": load_image(image),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def run_pipeline_test(self, dqa_pipeline, examples):
outputs = dqa_pipeline(examples, top_k=2)
self.assertEqual(
outputs,
[
[
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
]
]
* 3,
)
@require_torch
@require_detectron2
@require_pytesseract
def test_small_model_pt(self):
dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2")
image = INVOICE_URL
question = "How many cats are there?"
expected_output = [
{"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(outputs, [])
# We can optionnally pass directly the words and bounding boxes
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
words = []
boxes = []
outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2)
self.assertEqual(outputs, [])
# TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented
# @require_torch
# def test_small_model_pt_donut(self):
# dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut")
# # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut")
# image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png"
# question = "How many cats are there?"
#
# outputs = dqa_pipeline(image=image, question=question, top_k=2)
# self.assertEqual(
# nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
# )
@slow
@require_torch
@require_detectron2
@require_pytesseract
def test_large_model_pt(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
revision="9977165",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2,
)
@slow
@require_torch
@require_detectron2
@require_pytesseract
def test_large_model_pt_chunk(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
revision="9977165",
max_seq_len=50,
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2,
)
@slow
@require_torch
@require_pytesseract
@require_vision
def test_large_model_pt_layoutlm(self):
tokenizer = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
)
dqa_pipeline = pipeline(
"document-question-answering",
model="impira/layoutlm-document-qa",
tokenizer=tokenizer,
revision="3dc6de3",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2,
)
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
# This model should also work if `image` is set to None
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
],
)
@slow
@require_torch
@require_pytesseract
@require_vision
def test_large_model_pt_layoutlm_chunk(self):
tokenizer = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
)
dqa_pipeline = pipeline(
"document-question-answering",
model="impira/layoutlm-document-qa",
tokenizer=tokenizer,
revision="3dc6de3",
max_seq_len=50,
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
],
)
outputs = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2,
)
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
# This model should also work if `image` is set to None
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
],
)
@slow
@require_torch
def test_large_model_pt_donut(self):
dqa_pipeline = pipeline(
"document-question-answering",
model="naver-clova-ix/donut-base-finetuned-docvqa",
tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"),
feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa",
)
image = INVOICE_URL
question = "What is the invoice number?"
outputs = dqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}])
@require_tf
@unittest.skip("Document question answering not implemented in TF")
def test_small_model_tf(self):
pass