Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch ConvBERT model. """ | |
import os | |
import tempfile | |
import unittest | |
from transformers import ConvBertConfig, is_torch_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
ConvBertForMaskedLM, | |
ConvBertForMultipleChoice, | |
ConvBertForQuestionAnswering, | |
ConvBertForSequenceClassification, | |
ConvBertForTokenClassification, | |
ConvBertModel, | |
) | |
from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
class ConvBertModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return ConvBertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
) | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
config.is_decoder = True | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = ConvBertModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = ConvBertForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = ConvBertForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = ConvBertForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = ConvBertForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = ConvBertForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class ConvBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
ConvBertModel, | |
ConvBertForMaskedLM, | |
ConvBertForMultipleChoice, | |
ConvBertForQuestionAnswering, | |
ConvBertForSequenceClassification, | |
ConvBertForTokenClassification, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": ConvBertModel, | |
"fill-mask": ConvBertForMaskedLM, | |
"question-answering": ConvBertForQuestionAnswering, | |
"text-classification": ConvBertForSequenceClassification, | |
"token-classification": ConvBertForTokenClassification, | |
"zero-shot": ConvBertForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = ConvBertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ConvBertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
chunk_length = getattr(self.model_tester, "chunk_length", None) | |
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): | |
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
if chunk_length is not None: | |
self.assertListEqual( | |
list(attentions[0].shape[-4:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length], | |
) | |
else: | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
) | |
out_len = len(outputs) | |
if self.is_encoder_decoder: | |
correct_outlen = 5 | |
# loss is at first position | |
if "labels" in inputs_dict: | |
correct_outlen += 1 # loss is added to beginning | |
# Question Answering model returns start_logits and end_logits | |
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): | |
correct_outlen += 1 # start_logits and end_logits instead of only 1 output | |
if "past_key_values" in outputs: | |
correct_outlen += 1 # past_key_values have been returned | |
self.assertEqual(out_len, correct_outlen) | |
# decoder attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertIsInstance(decoder_attentions, (list, tuple)) | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
) | |
# cross attentions | |
cross_attentions = outputs.cross_attentions | |
self.assertIsInstance(cross_attentions, (list, tuple)) | |
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(cross_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
decoder_seq_length, | |
encoder_key_length, | |
], | |
) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
if hasattr(self.model_tester, "num_hidden_states_types"): | |
added_hidden_states = self.model_tester.num_hidden_states_types | |
elif self.is_encoder_decoder: | |
added_hidden_states = 2 | |
else: | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
if chunk_length is not None: | |
self.assertListEqual( | |
list(self_attentions[0].shape[-4:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length], | |
) | |
else: | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], | |
) | |
def test_torchscript_device_change(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# ConvBertForMultipleChoice behaves incorrectly in JIT environments. | |
if model_class == ConvBertForMultipleChoice: | |
return | |
config.torchscript = True | |
model = model_class(config=config) | |
inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
traced_model = torch.jit.trace( | |
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) | |
) | |
with tempfile.TemporaryDirectory() as tmp: | |
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt")) | |
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device) | |
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) | |
def test_model_for_input_embeds(self): | |
batch_size = 2 | |
seq_length = 10 | |
inputs_embeds = torch.rand([batch_size, seq_length, 768], device=torch_device) | |
config = self.model_tester.get_config() | |
model = ConvBertModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(inputs_embeds=inputs_embeds) | |
self.assertEqual(result.last_hidden_state.shape, (batch_size, seq_length, config.hidden_size)) | |
def test_reducing_attention_heads(self): | |
config, *inputs_dict = self.model_tester.prepare_config_and_inputs() | |
config.head_ratio = 4 | |
self.model_tester.create_and_check_for_masked_lm(config, *inputs_dict) | |
class ConvBertModelIntegrationTest(unittest.TestCase): | |
def test_inference_no_head(self): | |
model = ConvBertModel.from_pretrained("YituTech/conv-bert-base") | |
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]]) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 6, 768)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |