multimodal / transformers /tests /models /bridgetower /test_image_processing_bridgetower.py
Li
add transformers
455a40f
raw
history blame
No virus
10.5 kB
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class BridgeTowerImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
do_resize: bool = True,
size: Dict[str, int] = None,
size_divisor: int = 32,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
do_center_crop: bool = True,
image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073],
image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711],
do_pad: bool = True,
batch_size=7,
min_resolution=30,
max_resolution=400,
num_channels=3,
):
self.parent = parent
self.do_resize = do_resize
self.size = size if size is not None else {"shortest_edge": 288}
self.size_divisor = size_divisor
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.do_center_crop = do_center_crop
self.image_mean = image_mean
self.image_std = image_std
self.do_pad = do_pad
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to BridgeTowerImageProcessor,
assuming do_resize is set to True with a scalar size and size_divisor.
"""
if not batched:
size = self.size["shortest_edge"]
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
scale = size / min(w, h)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
max_size = int((1333 / 800) * size)
if max(newh, neww) > max_size:
scale = max_size / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
expected_height, expected_width = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
image_processing_class = BridgeTowerImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = BridgeTowerImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "size_divisor"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
# Initialize feature_extractor
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_pytorch(self):
# Initialize feature_extractor
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_equivalence_pad_and_create_pixel_mask(self):
# Initialize feature_extractors
image_processing_1 = self.image_processing_class(**self.image_processor_dict)
image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors
encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
encoded_images = image_processing_2(image_inputs, return_tensors="pt")
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
)
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
)