Spaces:
Runtime error
Runtime error
""" | |
coding=utf-8 | |
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal | |
Adapted From Facebook Inc, Detectron2 | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License.import copy | |
""" | |
import sys | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch import nn | |
from transformers.image_utils import PILImageResampling | |
from utils import img_tensorize | |
class ResizeShortestEdge: | |
def __init__(self, short_edge_length, max_size=sys.maxsize): | |
""" | |
Args: | |
short_edge_length (list[min, max]) | |
max_size (int): maximum allowed longest edge length. | |
""" | |
self.interp_method = "bilinear" | |
self.max_size = max_size | |
self.short_edge_length = short_edge_length | |
def __call__(self, imgs): | |
img_augs = [] | |
for img in imgs: | |
h, w = img.shape[:2] | |
# later: provide list and randomly choose index for resize | |
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1) | |
if size == 0: | |
return img | |
scale = size * 1.0 / min(h, w) | |
if h < w: | |
newh, neww = size, scale * w | |
else: | |
newh, neww = scale * h, size | |
if max(newh, neww) > self.max_size: | |
scale = self.max_size * 1.0 / max(newh, neww) | |
newh = newh * scale | |
neww = neww * scale | |
neww = int(neww + 0.5) | |
newh = int(newh + 0.5) | |
if img.dtype == np.uint8: | |
pil_image = Image.fromarray(img) | |
pil_image = pil_image.resize((neww, newh), PILImageResampling.BILINEAR) | |
img = np.asarray(pil_image) | |
else: | |
img = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw | |
img = nn.functional.interpolate( | |
img, (newh, neww), mode=self.interp_method, align_corners=False | |
).squeeze(0) | |
img_augs.append(img) | |
return img_augs | |
class Preprocess: | |
def __init__(self, cfg): | |
self.aug = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST) | |
self.input_format = cfg.INPUT.FORMAT | |
self.size_divisibility = cfg.SIZE_DIVISIBILITY | |
self.pad_value = cfg.PAD_VALUE | |
self.max_image_size = cfg.INPUT.MAX_SIZE_TEST | |
self.device = cfg.MODEL.DEVICE | |
self.pixel_std = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) | |
self.pixel_mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) | |
self.normalizer = lambda x: (x - self.pixel_mean) / self.pixel_std | |
def pad(self, images): | |
max_size = tuple(max(s) for s in zip(*[img.shape for img in images])) | |
image_sizes = [im.shape[-2:] for im in images] | |
images = [ | |
nn.functional.pad( | |
im, | |
[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], | |
value=self.pad_value, | |
) | |
for size, im in zip(image_sizes, images) | |
] | |
return torch.stack(images), torch.tensor(image_sizes) | |
def __call__(self, images, single_image=False): | |
with torch.no_grad(): | |
if not isinstance(images, list): | |
images = [images] | |
if single_image: | |
assert len(images) == 1 | |
for i in range(len(images)): | |
if isinstance(images[i], torch.Tensor): | |
images.insert(i, images.pop(i).to(self.device).float()) | |
elif not isinstance(images[i], torch.Tensor): | |
images.insert( | |
i, | |
torch.as_tensor(img_tensorize(images.pop(i), input_format=self.input_format)) | |
.to(self.device) | |
.float(), | |
) | |
# resize smallest edge | |
raw_sizes = torch.tensor([im.shape[:2] for im in images]) | |
images = self.aug(images) | |
# transpose images and convert to torch tensors | |
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] | |
# now normalize before pad to avoid useless arithmetic | |
images = [self.normalizer(x) for x in images] | |
# now pad them to do the following operations | |
images, sizes = self.pad(images) | |
# Normalize | |
if self.size_divisibility > 0: | |
raise NotImplementedError() | |
# pad | |
scales_yx = torch.true_divide(raw_sizes, sizes) | |
if single_image: | |
return images[0], sizes[0], scales_yx[0] | |
else: | |
return images, sizes, scales_yx | |
def _scale_box(boxes, scale_yx): | |
boxes[:, 0::2] *= scale_yx[:, 1] | |
boxes[:, 1::2] *= scale_yx[:, 0] | |
return boxes | |
def _clip_box(tensor, box_size: Tuple[int, int]): | |
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!" | |
h, w = box_size | |
tensor[:, 0].clamp_(min=0, max=w) | |
tensor[:, 1].clamp_(min=0, max=h) | |
tensor[:, 2].clamp_(min=0, max=w) | |
tensor[:, 3].clamp_(min=0, max=h) | |