Spaces:
Runtime error
Runtime error
# Copyright 2022 The Google Research Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
#!/bin/bash | |
# Create a virtual environment | |
conda deactivate | |
conda update conda -y | |
conda update anaconda -y | |
pip install --upgrade pip | |
python3 -m pip install --user virtualenv | |
conda create -n strata python=3.9 -y | |
conda activate strata | |
# Install all necessary packages | |
pip install transformers | |
pip install -r requirements.txt | |
# Download and prepare data | |
WORK_DIR="/tmp/strata" | |
rm -rf "${WORK_DIR}" && mkdir -p "${WORK_DIR}" | |
wget https://storage.googleapis.com/gresearch/strata/demo.zip -P "${WORK_DIR}" | |
DEMO_ZIP_FILE="${WORK_DIR}/demo.zip" | |
unzip "${DEMO_ZIP_FILE}" -d "${WORK_DIR}" && rm "${DEMO_ZIP_FILE}" | |
DATA_DIR="${WORK_DIR}/demo/scitail-8" | |
OUTPUT_DIR="/tmp/output" | |
rm -rf "${OUTPUT_DIR}" && mkdir -p "${OUTPUT_DIR}" | |
# Specific hyperparameters | |
MODEL_NAME_OR_PATH="bert-base-uncased" | |
NUM_NODES=1 | |
NUM_TRAINERS=4 | |
LAUNCH_SCRIPT="torchrun --nnodes='${NUM_NODES}' --nproc_per_node='${NUM_TRAINERS}' python -c" | |
MAX_SELFTRAIN_ITERATIONS=100 | |
TRAIN_FILE="train.csv" | |
INFER_FILE="infer.csv" | |
EVAL_FILE="eval_256.csv" | |
MAX_STEPS=100000 | |
# Start self-training | |
${LAUNCH_SCRIPT} " | |
import os | |
from selftraining import selftrain | |
data_dir = '${DATA_DIR}' | |
parameters_dict = { | |
'max_selftrain_iterations': ${MAX_SELFTRAIN_ITERATIONS}, | |
'model_name_or_path': '${MODEL_NAME_OR_PATH}', | |
'output_dir': '${OUTPUT_DIR}', | |
'train_file': os.path.join(data_dir, '${TRAIN_FILE}'), | |
'infer_file': os.path.join(data_dir, '${INFER_FILE}'), | |
'eval_file': os.path.join(data_dir, '${EVAL_FILE}'), | |
'evaluation_strategy': 'steps', | |
'task_name': 'scitail', | |
'label_list': ['entails', 'neutral'], | |
'per_device_train_batch_size': 32, | |
'per_device_eval_batch_size': 8, | |
'max_length': 128, | |
'learning_rate': 2e-5, | |
'max_steps': ${MAX_STEPS}, | |
'eval_steps': 1, | |
'early_stopping_patience': 50, | |
'overwrite_output_dir': True, | |
'do_filter_by_confidence': False, | |
'do_filter_by_val_performance': True, | |
'finetune_on_labeled_data': False, | |
'seed': 42, | |
} | |
selftrain(**parameters_dict) | |
" | |