Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Utils to train DistilBERT | |
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) | |
""" | |
import json | |
import logging | |
import os | |
import socket | |
import git | |
import numpy as np | |
import torch | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger = logging.getLogger(__name__) | |
def git_log(folder_path: str): | |
""" | |
Log commit info. | |
""" | |
repo = git.Repo(search_parent_directories=True) | |
repo_infos = { | |
"repo_id": str(repo), | |
"repo_sha": str(repo.head.object.hexsha), | |
"repo_branch": str(repo.active_branch), | |
} | |
with open(os.path.join(folder_path, "git_log.json"), "w") as f: | |
json.dump(repo_infos, f, indent=4) | |
def init_gpu_params(params): | |
""" | |
Handle single and multi-GPU / multi-node. | |
""" | |
if params.n_gpu <= 0: | |
params.local_rank = 0 | |
params.master_port = -1 | |
params.is_master = True | |
params.multi_gpu = False | |
return | |
assert torch.cuda.is_available() | |
logger.info("Initializing GPUs") | |
if params.n_gpu > 1: | |
assert params.local_rank != -1 | |
params.world_size = int(os.environ["WORLD_SIZE"]) | |
params.n_gpu_per_node = int(os.environ["N_GPU_NODE"]) | |
params.global_rank = int(os.environ["RANK"]) | |
# number of nodes / node ID | |
params.n_nodes = params.world_size // params.n_gpu_per_node | |
params.node_id = params.global_rank // params.n_gpu_per_node | |
params.multi_gpu = True | |
assert params.n_nodes == int(os.environ["N_NODES"]) | |
assert params.node_id == int(os.environ["NODE_RANK"]) | |
# local job (single GPU) | |
else: | |
assert params.local_rank == -1 | |
params.n_nodes = 1 | |
params.node_id = 0 | |
params.local_rank = 0 | |
params.global_rank = 0 | |
params.world_size = 1 | |
params.n_gpu_per_node = 1 | |
params.multi_gpu = False | |
# sanity checks | |
assert params.n_nodes >= 1 | |
assert 0 <= params.node_id < params.n_nodes | |
assert 0 <= params.local_rank <= params.global_rank < params.world_size | |
assert params.world_size == params.n_nodes * params.n_gpu_per_node | |
# define whether this is the master process / if we are in multi-node distributed mode | |
params.is_master = params.node_id == 0 and params.local_rank == 0 | |
params.multi_node = params.n_nodes > 1 | |
# summary | |
PREFIX = f"--- Global rank: {params.global_rank} - " | |
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes) | |
logger.info(PREFIX + "Node ID : %i" % params.node_id) | |
logger.info(PREFIX + "Local rank : %i" % params.local_rank) | |
logger.info(PREFIX + "World size : %i" % params.world_size) | |
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node) | |
logger.info(PREFIX + "Master : %s" % str(params.is_master)) | |
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node)) | |
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu)) | |
logger.info(PREFIX + "Hostname : %s" % socket.gethostname()) | |
# set GPU device | |
torch.cuda.set_device(params.local_rank) | |
# initialize multi-GPU | |
if params.multi_gpu: | |
logger.info("Initializing PyTorch distributed") | |
torch.distributed.init_process_group( | |
init_method="env://", | |
backend="nccl", | |
) | |
def set_seed(args): | |
""" | |
Set the random seed. | |
""" | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |