Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Training the distilled model. | |
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2. | |
""" | |
import argparse | |
import json | |
import os | |
import pickle | |
import shutil | |
import numpy as np | |
import torch | |
from distiller import Distiller | |
from lm_seqs_dataset import LmSeqsDataset | |
from transformers import ( | |
BertConfig, | |
BertForMaskedLM, | |
BertTokenizer, | |
DistilBertConfig, | |
DistilBertForMaskedLM, | |
DistilBertTokenizer, | |
GPT2Config, | |
GPT2LMHeadModel, | |
GPT2Tokenizer, | |
RobertaConfig, | |
RobertaForMaskedLM, | |
RobertaTokenizer, | |
) | |
from utils import git_log, init_gpu_params, logger, set_seed | |
MODEL_CLASSES = { | |
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), | |
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), | |
"bert": (BertConfig, BertForMaskedLM, BertTokenizer), | |
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), | |
} | |
def sanity_checks(args): | |
""" | |
A bunch of args sanity checks to perform even starting... | |
""" | |
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) | |
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) | |
if args.mlm: | |
assert os.path.isfile(args.token_counts) | |
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) | |
else: | |
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) | |
assert args.teacher_type == args.student_type or ( | |
args.student_type == "distilbert" and args.teacher_type == "bert" | |
) | |
assert os.path.isfile(args.student_config) | |
if args.student_pretrained_weights is not None: | |
assert os.path.isfile(args.student_pretrained_weights) | |
if args.freeze_token_type_embds: | |
assert args.student_type in ["roberta"] | |
assert args.alpha_ce >= 0.0 | |
assert args.alpha_mlm >= 0.0 | |
assert args.alpha_clm >= 0.0 | |
assert args.alpha_mse >= 0.0 | |
assert args.alpha_cos >= 0.0 | |
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 | |
def freeze_pos_embeddings(student, args): | |
if args.student_type == "roberta": | |
student.roberta.embeddings.position_embeddings.weight.requires_grad = False | |
elif args.student_type == "gpt2": | |
student.transformer.wpe.weight.requires_grad = False | |
def freeze_token_type_embeddings(student, args): | |
if args.student_type == "roberta": | |
student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False | |
def main(): | |
parser = argparse.ArgumentParser(description="Training") | |
parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.") | |
parser.add_argument( | |
"--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)" | |
) | |
parser.add_argument( | |
"--data_file", | |
type=str, | |
required=True, | |
help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", | |
) | |
parser.add_argument( | |
"--student_type", | |
type=str, | |
choices=["distilbert", "roberta", "gpt2"], | |
required=True, | |
help="The student type (DistilBERT, RoBERTa).", | |
) | |
parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.") | |
parser.add_argument( | |
"--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint." | |
) | |
parser.add_argument( | |
"--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)." | |
) | |
parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.") | |
parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.") | |
parser.add_argument( | |
"--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0." | |
) | |
parser.add_argument( | |
"--alpha_mlm", | |
default=0.0, | |
type=float, | |
help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", | |
) | |
parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.") | |
parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") | |
parser.add_argument( | |
"--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0." | |
) | |
parser.add_argument( | |
"--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." | |
) | |
parser.add_argument( | |
"--mlm_mask_prop", | |
default=0.15, | |
type=float, | |
help="Proportion of tokens for which we need to make a prediction.", | |
) | |
parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") | |
parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") | |
parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") | |
parser.add_argument( | |
"--mlm_smoothing", | |
default=0.7, | |
type=float, | |
help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", | |
) | |
parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.") | |
parser.add_argument( | |
"--restrict_ce_to_mask", | |
action="store_true", | |
help="If true, compute the distillation loss only the [MLM] prediction distribution.", | |
) | |
parser.add_argument( | |
"--freeze_pos_embs", | |
action="store_true", | |
help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", | |
) | |
parser.add_argument( | |
"--freeze_token_type_embds", | |
action="store_true", | |
help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", | |
) | |
parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") | |
parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") | |
parser.add_argument( | |
"--group_by_size", | |
action="store_false", | |
help="If true, group sequences that have similar length into the same batch. Default is true.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=50, | |
help="Gradient accumulation for larger training batches.", | |
) | |
parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help=( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html" | |
), | |
) | |
parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") | |
parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") | |
parser.add_argument("--seed", type=int, default=56, help="Random seed") | |
parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") | |
parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") | |
args = parser.parse_args() | |
sanity_checks(args) | |
# ARGS # | |
init_gpu_params(args) | |
set_seed(args) | |
if args.is_master: | |
if os.path.exists(args.dump_path): | |
if not args.force: | |
raise ValueError( | |
f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" | |
" itUse `--force` if you want to overwrite it" | |
) | |
else: | |
shutil.rmtree(args.dump_path) | |
if not os.path.exists(args.dump_path): | |
os.makedirs(args.dump_path) | |
logger.info(f"Experiment will be dumped and logged in {args.dump_path}") | |
# SAVE PARAMS # | |
logger.info(f"Param: {args}") | |
with open(os.path.join(args.dump_path, "parameters.json"), "w") as f: | |
json.dump(vars(args), f, indent=4) | |
git_log(args.dump_path) | |
student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type] | |
teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type] | |
# TOKENIZER # | |
tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name) | |
special_tok_ids = {} | |
for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): | |
idx = tokenizer.all_special_tokens.index(tok_symbol) | |
special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] | |
logger.info(f"Special tokens {special_tok_ids}") | |
args.special_tok_ids = special_tok_ids | |
args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name] | |
# DATA LOADER # | |
logger.info(f"Loading data from {args.data_file}") | |
with open(args.data_file, "rb") as fp: | |
data = pickle.load(fp) | |
if args.mlm: | |
logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)") | |
with open(args.token_counts, "rb") as fp: | |
counts = pickle.load(fp) | |
token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing | |
for idx in special_tok_ids.values(): | |
token_probs[idx] = 0.0 # do not predict special tokens | |
token_probs = torch.from_numpy(token_probs) | |
else: | |
token_probs = None | |
train_lm_seq_dataset = LmSeqsDataset(params=args, data=data) | |
logger.info("Data loader created.") | |
# STUDENT # | |
logger.info(f"Loading student config from {args.student_config}") | |
stu_architecture_config = student_config_class.from_pretrained(args.student_config) | |
stu_architecture_config.output_hidden_states = True | |
if args.student_pretrained_weights is not None: | |
logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}") | |
student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config) | |
else: | |
student = student_model_class(stu_architecture_config) | |
if args.n_gpu > 0: | |
student.to(f"cuda:{args.local_rank}") | |
logger.info("Student loaded.") | |
# TEACHER # | |
teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True) | |
if args.n_gpu > 0: | |
teacher.to(f"cuda:{args.local_rank}") | |
logger.info(f"Teacher loaded from {args.teacher_name}.") | |
# FREEZING # | |
if args.freeze_pos_embs: | |
freeze_pos_embeddings(student, args) | |
if args.freeze_token_type_embds: | |
freeze_token_type_embeddings(student, args) | |
# SANITY CHECKS # | |
assert student.config.vocab_size == teacher.config.vocab_size | |
assert student.config.hidden_size == teacher.config.hidden_size | |
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings | |
if args.mlm: | |
assert token_probs.size(0) == stu_architecture_config.vocab_size | |
# DISTILLER # | |
torch.cuda.empty_cache() | |
distiller = Distiller( | |
params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher | |
) | |
distiller.train() | |
logger.info("Let's go get some drinks.") | |
if __name__ == "__main__": | |
main() | |