Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Preprocessing script before distillation. | |
""" | |
import argparse | |
import logging | |
import pickle | |
import random | |
import time | |
import numpy as np | |
from transformers import BertTokenizer, GPT2Tokenizer, RobertaTokenizer | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO | |
) | |
logger = logging.getLogger(__name__) | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." | |
) | |
parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.") | |
parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"]) | |
parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.") | |
parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.") | |
args = parser.parse_args() | |
logger.info(f"Loading Tokenizer ({args.tokenizer_name})") | |
if args.tokenizer_type == "bert": | |
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name) | |
bos = tokenizer.special_tokens_map["cls_token"] # `[CLS]` | |
sep = tokenizer.special_tokens_map["sep_token"] # `[SEP]` | |
elif args.tokenizer_type == "roberta": | |
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name) | |
bos = tokenizer.special_tokens_map["cls_token"] # `<s>` | |
sep = tokenizer.special_tokens_map["sep_token"] # `</s>` | |
elif args.tokenizer_type == "gpt2": | |
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name) | |
bos = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` | |
sep = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` | |
logger.info(f"Loading text from {args.file_path}") | |
with open(args.file_path, "r", encoding="utf8") as fp: | |
data = fp.readlines() | |
logger.info("Start encoding") | |
logger.info(f"{len(data)} examples to process.") | |
rslt = [] | |
iter = 0 | |
interval = 10000 | |
start = time.time() | |
for text in data: | |
text = f"{bos} {text.strip()} {sep}" | |
token_ids = tokenizer.encode(text, add_special_tokens=False) | |
rslt.append(token_ids) | |
iter += 1 | |
if iter % interval == 0: | |
end = time.time() | |
logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl") | |
start = time.time() | |
logger.info("Finished binarization") | |
logger.info(f"{len(data)} examples processed.") | |
dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle" | |
vocab_size = tokenizer.vocab_size | |
if vocab_size < (1 << 16): | |
rslt_ = [np.uint16(d) for d in rslt] | |
else: | |
rslt_ = [np.int32(d) for d in rslt] | |
random.shuffle(rslt_) | |
logger.info(f"Dump to {dp_file}") | |
with open(dp_file, "wb") as handle: | |
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL) | |
if __name__ == "__main__": | |
main() | |