Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright 2018 CMU and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Bertology: this script shows how you can explore the internals of the models in the library to: | |
- compute the entropy of the head attentions | |
- compute the importance of each head | |
- prune (remove) the low importance head. | |
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650) | |
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1 | |
""" | |
import argparse | |
import logging | |
import os | |
from datetime import datetime | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader, SequentialSampler, Subset | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
GlueDataset, | |
default_data_collator, | |
glue_compute_metrics, | |
glue_output_modes, | |
glue_processors, | |
set_seed, | |
) | |
from transformers.trainer_utils import is_main_process | |
logger = logging.getLogger(__name__) | |
def entropy(p): | |
"""Compute the entropy of a probability distribution""" | |
plogp = p * torch.log(p) | |
plogp[p == 0] = 0 | |
return -plogp.sum(dim=-1) | |
def print_2d_tensor(tensor): | |
"""Print a 2D tensor""" | |
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) | |
for row in range(len(tensor)): | |
if tensor.dtype != torch.long: | |
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) | |
else: | |
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) | |
def compute_heads_importance( | |
args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False | |
): | |
"""This method shows how to compute: | |
- head attention entropy | |
- head importance scores according to http://arxiv.org/abs/1905.10650 | |
""" | |
# Prepare our tensors | |
n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads | |
head_importance = torch.zeros(n_layers, n_heads).to(args.device) | |
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) | |
if head_mask is None: | |
head_mask = torch.ones(n_layers, n_heads).to(args.device) | |
head_mask.requires_grad_(requires_grad=True) | |
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch | |
if actually_pruned: | |
head_mask = None | |
preds = None | |
labels = None | |
tot_tokens = 0.0 | |
for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): | |
for k, v in inputs.items(): | |
inputs[k] = v.to(args.device) | |
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) | |
outputs = model(**inputs, head_mask=head_mask) | |
loss, logits, all_attentions = ( | |
outputs[0], | |
outputs[1], | |
outputs[-1], | |
) # Loss and logits are the first, attention the last | |
loss.backward() # Backpropagate to populate the gradients in the head mask | |
if compute_entropy: | |
for layer, attn in enumerate(all_attentions): | |
masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1) | |
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() | |
if compute_importance: | |
head_importance += head_mask.grad.abs().detach() | |
# Also store our logits/labels if we want to compute metrics afterwards | |
if preds is None: | |
preds = logits.detach().cpu().numpy() | |
labels = inputs["labels"].detach().cpu().numpy() | |
else: | |
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0) | |
tot_tokens += inputs["attention_mask"].float().detach().sum().data | |
# Normalize | |
attn_entropy /= tot_tokens | |
head_importance /= tot_tokens | |
# Layerwise importance normalization | |
if not args.dont_normalize_importance_by_layer: | |
exponent = 2 | |
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent) | |
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 | |
if not args.dont_normalize_global_importance: | |
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) | |
# Print/save matrices | |
np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy()) | |
np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy()) | |
logger.info("Attention entropies") | |
print_2d_tensor(attn_entropy) | |
logger.info("Head importance scores") | |
print_2d_tensor(head_importance) | |
logger.info("Head ranked by importance scores") | |
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) | |
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange( | |
head_importance.numel(), device=args.device | |
) | |
head_ranks = head_ranks.view_as(head_importance) | |
print_2d_tensor(head_ranks) | |
return attn_entropy, head_importance, preds, labels | |
def mask_heads(args, model, eval_dataloader): | |
"""This method shows how to mask head (set some heads to zero), to test the effect on the network, | |
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) | |
""" | |
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) | |
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) | |
new_head_mask = torch.ones_like(head_importance) | |
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) | |
current_score = original_score | |
while current_score >= original_score * args.masking_threshold: | |
head_mask = new_head_mask.clone() # save current head mask | |
# heads from least important to most - keep only not-masked heads | |
head_importance[head_mask == 0.0] = float("Inf") | |
current_heads_to_mask = head_importance.view(-1).sort()[1] | |
if len(current_heads_to_mask) <= num_to_mask: | |
break | |
# mask heads | |
current_heads_to_mask = current_heads_to_mask[:num_to_mask] | |
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) | |
new_head_mask = new_head_mask.view(-1) | |
new_head_mask[current_heads_to_mask] = 0.0 | |
new_head_mask = new_head_mask.view_as(head_mask) | |
new_head_mask = new_head_mask.clone().detach() | |
print_2d_tensor(new_head_mask) | |
# Compute metric and head importance again | |
_, head_importance, preds, labels = compute_heads_importance( | |
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask | |
) | |
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
logger.info( | |
"Masking: current score: %f, remaining heads %d (%.1f percents)", | |
current_score, | |
new_head_mask.sum(), | |
new_head_mask.sum() / new_head_mask.numel() * 100, | |
) | |
logger.info("Final head mask") | |
print_2d_tensor(head_mask) | |
np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy()) | |
return head_mask | |
def prune_heads(args, model, eval_dataloader, head_mask): | |
"""This method shows how to prune head (remove heads weights) based on | |
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) | |
""" | |
# Try pruning and test time speedup | |
# Pruning is like masking but we actually remove the masked weights | |
before_time = datetime.now() | |
_, _, preds, labels = compute_heads_importance( | |
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask | |
) | |
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
original_time = datetime.now() - before_time | |
original_num_params = sum(p.numel() for p in model.parameters()) | |
heads_to_prune = { | |
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask)) | |
} | |
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() | |
model.prune_heads(heads_to_prune) | |
pruned_num_params = sum(p.numel() for p in model.parameters()) | |
before_time = datetime.now() | |
_, _, preds, labels = compute_heads_importance( | |
args, | |
model, | |
eval_dataloader, | |
compute_entropy=False, | |
compute_importance=False, | |
head_mask=None, | |
actually_pruned=True, | |
) | |
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
new_time = datetime.now() - before_time | |
logger.info( | |
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", | |
original_num_params, | |
pruned_num_params, | |
pruned_num_params / original_num_params * 100, | |
) | |
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) | |
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100) | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--data_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The input data dir. Should contain the .tsv files (or other data files) for the task.", | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models", | |
) | |
parser.add_argument( | |
"--task_name", | |
default=None, | |
type=str, | |
required=True, | |
help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()), | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--config_name", | |
default="", | |
type=str, | |
help="Pretrained config name or path if not the same as model_name_or_path", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name_or_path", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default=None, | |
type=str, | |
help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
) | |
parser.add_argument( | |
"--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances." | |
) | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument( | |
"--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers" | |
) | |
parser.add_argument( | |
"--dont_normalize_global_importance", | |
action="store_true", | |
help="Don't normalize all importance scores between 0 and 1", | |
) | |
parser.add_argument( | |
"--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy." | |
) | |
parser.add_argument( | |
"--masking_threshold", | |
default=0.9, | |
type=float, | |
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", | |
) | |
parser.add_argument( | |
"--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step." | |
) | |
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") | |
parser.add_argument( | |
"--max_seq_length", | |
default=128, | |
type=int, | |
help=( | |
"The maximum total input sequence length after WordPiece tokenization. \n" | |
"Sequences longer than this will be truncated, sequences shorter padded." | |
), | |
) | |
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") | |
parser.add_argument("--seed", type=int, default=42) | |
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") | |
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") | |
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
args = parser.parse_args() | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup devices and distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
else: | |
torch.cuda.set_device(args.local_rank) | |
args.device = torch.device("cuda", args.local_rank) | |
args.n_gpu = 1 | |
torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend | |
# Setup logging | |
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) | |
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Set seeds | |
set_seed(args.seed) | |
# Prepare GLUE task | |
args.task_name = args.task_name.lower() | |
if args.task_name not in glue_processors: | |
raise ValueError("Task not found: %s" % (args.task_name)) | |
processor = glue_processors[args.task_name]() | |
args.output_mode = glue_output_modes[args.task_name] | |
label_list = processor.get_labels() | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
args.config_name if args.config_name else args.model_name_or_path, | |
num_labels=num_labels, | |
finetuning_task=args.task_name, | |
output_attentions=True, | |
cache_dir=args.cache_dir, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
cache_dir=args.cache_dir, | |
) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
args.model_name_or_path, | |
from_tf=bool(".ckpt" in args.model_name_or_path), | |
config=config, | |
cache_dir=args.cache_dir, | |
) | |
# Distributed and parallel training | |
model.to(args.device) | |
if args.local_rank != -1: | |
model = nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
) | |
elif args.n_gpu > 1: | |
model = nn.DataParallel(model) | |
# Print/save training arguments | |
os.makedirs(args.output_dir, exist_ok=True) | |
torch.save(args, os.path.join(args.output_dir, "run_args.bin")) | |
logger.info("Training/evaluation parameters %s", args) | |
# Prepare dataset for the GLUE task | |
eval_dataset = GlueDataset(args, tokenizer=tokenizer, mode="dev") | |
if args.data_subset > 0: | |
eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset))))) | |
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) | |
eval_dataloader = DataLoader( | |
eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=default_data_collator | |
) | |
# Compute head entropy and importance score | |
compute_heads_importance(args, model, eval_dataloader) | |
# Try head masking (set heads to zero until the score goes under a threshole) | |
# and head pruning (remove masked heads and see the effect on the network) | |
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: | |
head_mask = mask_heads(args, model, eval_dataloader) | |
prune_heads(args, model, eval_dataloader, head_mask) | |
if __name__ == "__main__": | |
main() | |