Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM). | |
Adapted from `examples/text-classification/run_glue.py`""" | |
import logging | |
import os | |
import random | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import datasets | |
import evaluate | |
import numpy as np | |
from datasets import load_dataset | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
DataCollatorWithPadding, | |
EvalPrediction, | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
default_data_collator, | |
set_seed, | |
) | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") | |
logger = logging.getLogger(__name__) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
max_seq_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
pad_to_max_length: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to `max_seq_length`. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
language: str = field( | |
default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} | |
) | |
train_language: Optional[str] = field( | |
default=None, metadata={"help": "Train language if it is different from the evaluation language."} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
do_lower_case: Optional[bool] = field( | |
default=False, | |
metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
ignore_mismatched_sizes: bool = field( | |
default=False, | |
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, | |
) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_xnli", model_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
if training_args.should_log: | |
# The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
transformers.utils.logging.set_verbosity_info() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
# Downloading and loading xnli dataset from the hub. | |
if training_args.do_train: | |
if model_args.train_language is None: | |
train_dataset = load_dataset( | |
"xnli", | |
model_args.language, | |
split="train", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
train_dataset = load_dataset( | |
"xnli", | |
model_args.train_language, | |
split="train", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
label_list = train_dataset.features["label"].names | |
if training_args.do_eval: | |
eval_dataset = load_dataset( | |
"xnli", | |
model_args.language, | |
split="validation", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
label_list = eval_dataset.features["label"].names | |
if training_args.do_predict: | |
predict_dataset = load_dataset( | |
"xnli", | |
model_args.language, | |
split="test", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
label_list = predict_dataset.features["label"].names | |
# Labels | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
num_labels=num_labels, | |
id2label={str(i): label for i, label in enumerate(label_list)}, | |
label2id={label: i for i, label in enumerate(label_list)}, | |
finetuning_task="xnli", | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
do_lower_case=model_args.do_lower_case, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, | |
) | |
# Preprocessing the datasets | |
# Padding strategy | |
if data_args.pad_to_max_length: | |
padding = "max_length" | |
else: | |
# We will pad later, dynamically at batch creation, to the max sequence length in each batch | |
padding = False | |
def preprocess_function(examples): | |
# Tokenize the texts | |
return tokenizer( | |
examples["premise"], | |
examples["hypothesis"], | |
padding=padding, | |
max_length=data_args.max_seq_length, | |
truncation=True, | |
) | |
if training_args.do_train: | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
with training_args.main_process_first(desc="train dataset map pre-processing"): | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
# Log a few random samples from the training set: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
if training_args.do_eval: | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
if training_args.do_predict: | |
if data_args.max_predict_samples is not None: | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
predict_dataset = predict_dataset.map( | |
preprocess_function, | |
batched=True, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
# Get the metric function | |
metric = evaluate.load("xnli") | |
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a | |
# predictions and label_ids field) and has to return a dictionary string to float. | |
def compute_metrics(p: EvalPrediction): | |
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions | |
preds = np.argmax(preds, axis=1) | |
return metric.compute(predictions=preds, references=p.label_ids) | |
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. | |
if data_args.pad_to_max_length: | |
data_collator = default_data_collator | |
elif training_args.fp16: | |
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) | |
else: | |
data_collator = None | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
compute_metrics=compute_metrics, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate(eval_dataset=eval_dataset) | |
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Prediction | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") | |
max_predict_samples = ( | |
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
) | |
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
trainer.log_metrics("predict", metrics) | |
trainer.save_metrics("predict", metrics) | |
predictions = np.argmax(predictions, axis=1) | |
output_predict_file = os.path.join(training_args.output_dir, "predictions.txt") | |
if trainer.is_world_process_zero(): | |
with open(output_predict_file, "w") as writer: | |
writer.write("index\tprediction\n") | |
for index, item in enumerate(predictions): | |
item = label_list[item] | |
writer.write(f"{index}\t{item}\n") | |
if __name__ == "__main__": | |
main() | |