Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library's seq2seq models for question answering using the 🤗 Seq2SeqTrainer. | |
""" | |
# You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import List, Optional, Tuple | |
import datasets | |
import evaluate | |
import numpy as np | |
from datasets import load_dataset | |
from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
DataCollatorForSeq2Seq, | |
HfArgumentParser, | |
Seq2SeqTrainingArguments, | |
set_seed, | |
) | |
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
context_column: Optional[str] = field( | |
default="context", | |
metadata={"help": "The name of the column in the datasets containing the contexts (for question answering)."}, | |
) | |
question_column: Optional[str] = field( | |
default="question", | |
metadata={"help": "The name of the column in the datasets containing the questions (for question answering)."}, | |
) | |
answer_column: Optional[str] = field( | |
default="answers", | |
metadata={"help": "The name of the column in the datasets containing the answers (for question answering)."}, | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: int = field( | |
default=384, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
max_answer_length: int = field( | |
default=30, | |
metadata={ | |
"help": ( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
) | |
}, | |
) | |
val_max_answer_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded. Will default to `max_answer_length`." | |
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
"during ``evaluate`` and ``predict``." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
" batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
version_2_with_negative: bool = field( | |
default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
) | |
null_score_diff_threshold: float = field( | |
default=0.0, | |
metadata={ | |
"help": ( | |
"The threshold used to select the null answer: if the best answer has a score that is less than " | |
"the score of the null answer minus this threshold, the null answer is selected for this example. " | |
"Only useful when `version_2_with_negative=True`." | |
) | |
}, | |
) | |
doc_stride: int = field( | |
default=128, | |
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
) | |
n_best_size: int = field( | |
default=20, | |
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
) | |
num_beams: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " | |
"which is used during ``evaluate`` and ``predict``." | |
) | |
}, | |
) | |
ignore_pad_token_for_loss: bool = field( | |
default=True, | |
metadata={ | |
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
}, | |
) | |
def __post_init__(self): | |
if ( | |
self.dataset_name is None | |
and self.train_file is None | |
and self.validation_file is None | |
and self.test_file is None | |
): | |
raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
if self.test_file is not None: | |
extension = self.test_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
if self.val_max_answer_length is None: | |
self.val_max_answer_length = self.max_answer_length | |
question_answering_column_name_mapping = { | |
"squad_v2": ("question", "context", "answer"), | |
} | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_seq2seq_qa", model_args, data_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
if training_args.should_log: | |
# The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
transformers.utils.logging.set_verbosity_info() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
field="data", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
# on a small vocab and want a smaller embedding size, remove this test. | |
embedding_size = model.get_input_embeddings().weight.shape[0] | |
if len(tokenizer) > embedding_size: | |
model.resize_token_embeddings(len(tokenizer)) | |
if model.config.decoder_start_token_id is None: | |
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
# Preprocessing the datasets. | |
# We need to generate and tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = raw_datasets["train"].column_names | |
elif training_args.do_eval: | |
column_names = raw_datasets["validation"].column_names | |
elif training_args.do_predict: | |
column_names = raw_datasets["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# Get the column names for input/target. | |
dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None) | |
if data_args.question_column is None: | |
question_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
else: | |
question_column = data_args.question_column | |
if question_column not in column_names: | |
raise ValueError( | |
f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if data_args.context_column is None: | |
context_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
else: | |
context_column = data_args.context_column | |
if context_column not in column_names: | |
raise ValueError( | |
f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if data_args.answer_column is None: | |
answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2] | |
else: | |
answer_column = data_args.answer_column | |
if answer_column not in column_names: | |
raise ValueError( | |
f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
# Temporarily set max_answer_length for training. | |
max_answer_length = data_args.max_answer_length | |
padding = "max_length" if data_args.pad_to_max_length else False | |
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
logger.warning( | |
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" | |
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" | |
) | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
def preprocess_squad_batch( | |
examples, | |
question_column: str, | |
context_column: str, | |
answer_column: str, | |
) -> Tuple[List[str], List[str]]: | |
questions = examples[question_column] | |
contexts = examples[context_column] | |
answers = examples[answer_column] | |
def generate_input(_question, _context): | |
return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()]) | |
inputs = [generate_input(question, context) for question, context in zip(questions, contexts)] | |
targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers] | |
return inputs, targets | |
def preprocess_function(examples): | |
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) | |
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True) | |
# Tokenize targets with text_target=... | |
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) | |
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
# padding in the loss. | |
if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
labels["input_ids"] = [ | |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
] | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
# Validation preprocessing | |
def preprocess_validation_function(examples): | |
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column) | |
model_inputs = tokenizer( | |
inputs, | |
max_length=max_seq_length, | |
padding=padding, | |
truncation=True, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
) | |
# Tokenize targets with the `text_target` keyword argument | |
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True) | |
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
# padding in the loss. | |
if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
labels["input_ids"] = [ | |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
] | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = model_inputs.pop("overflow_to_sample_mapping") | |
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
# corresponding example_id and we will store the offset mappings. | |
model_inputs["example_id"] = [] | |
# Augment the overflowing tokens to the labels | |
labels_out = [] | |
for i in range(len(model_inputs["input_ids"])): | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
model_inputs["example_id"].append(examples["id"][sample_index]) | |
labels_out.append(labels["input_ids"][sample_index]) | |
model_inputs["labels"] = labels_out | |
return model_inputs | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
# We will select sample from whole data if agument is specified | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
# Create train feature from dataset | |
with training_args.main_process_first(desc="train dataset map pre-processing"): | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
if data_args.max_train_samples is not None: | |
# Number of samples might increase during Feature Creation, We select only specified max samples | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
if training_args.do_eval: | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_examples = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
# We will select sample from whole data | |
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
eval_examples = eval_examples.select(range(max_eval_samples)) | |
# Validation Feature Creation | |
with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
eval_dataset = eval_examples.map( | |
preprocess_validation_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
if data_args.max_eval_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
if training_args.do_predict: | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_examples = raw_datasets["test"] | |
if data_args.max_predict_samples is not None: | |
# We will select sample from whole data | |
predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
# Predict Feature Creation | |
with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
predict_dataset = predict_examples.map( | |
preprocess_validation_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
if data_args.max_predict_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
# Data collator | |
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
model=model, | |
label_pad_token_id=label_pad_token_id, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
) | |
metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
def compute_metrics(p: EvalPrediction): | |
return metric.compute(predictions=p.predictions, references=p.label_ids) | |
# Post-processing: | |
def post_processing_function( | |
examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval" | |
): | |
# Decode the predicted tokens. | |
preds = outputs.predictions | |
if isinstance(preds, tuple): | |
preds = preds[0] | |
# Replace -100s used for padding as we can't decode them | |
preds = np.where(preds != -100, preds, tokenizer.pad_token_id) | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
# Build a map example to its corresponding features. | |
example_id_to_index = {k: i for i, k in enumerate(examples["id"])} | |
feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)} | |
predictions = {} | |
# Let's loop over all the examples! | |
for example_index, example in enumerate(examples): | |
# This is the index of the feature associated to the current example. | |
feature_index = feature_per_example[example_index] | |
predictions[example["id"]] = decoded_preds[feature_index] | |
# Format the result to the format the metric expects. | |
if data_args.version_2_with_negative: | |
formatted_predictions = [ | |
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
] | |
else: | |
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples] | |
return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
# Initialize our Trainer | |
trainer = QuestionAnsweringSeq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
eval_examples=eval_examples if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics if training_args.predict_with_generate else None, | |
post_process_function=post_processing_function, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
results = {} | |
max_length = ( | |
training_args.generation_max_length | |
if training_args.generation_max_length is not None | |
else data_args.val_max_answer_length | |
) | |
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") | |
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Prediction | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
results = trainer.predict(predict_dataset, predict_examples) | |
metrics = results.metrics | |
max_predict_samples = ( | |
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
) | |
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
trainer.log_metrics("predict", metrics) | |
trainer.save_metrics("predict", metrics) | |
if training_args.push_to_hub: | |
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} | |
if data_args.dataset_name is not None: | |
kwargs["dataset_tags"] = data_args.dataset_name | |
if data_args.dataset_config_name is not None: | |
kwargs["dataset_args"] = data_args.dataset_config_name | |
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
else: | |
kwargs["dataset"] = data_args.dataset_name | |
trainer.push_to_hub(**kwargs) | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |