Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import shutil | |
import time | |
from json import JSONDecodeError | |
from logging import getLogger | |
from pathlib import Path | |
from typing import Dict, List | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from utils import ( | |
Seq2SeqDataset, | |
calculate_bleu, | |
calculate_rouge, | |
chunks, | |
lmap, | |
load_json, | |
parse_numeric_n_bool_cl_kwargs, | |
save_json, | |
use_task_specific_params, | |
write_txt_file, | |
) | |
logger = getLogger(__name__) | |
def eval_data_dir( | |
data_dir, | |
save_dir: str, | |
model_name: str, | |
bs: int = 8, | |
max_source_length: int = 1024, | |
type_path="val", | |
n_obs=None, | |
fp16=False, | |
task="summarization", | |
local_rank=None, | |
num_return_sequences=1, | |
dataset_kwargs: Dict = None, | |
prefix="", | |
**generate_kwargs, | |
) -> Dict: | |
"""Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json""" | |
model_name = str(model_name) | |
assert local_rank is not None | |
torch.distributed.init_process_group(backend="nccl", rank=local_rank) | |
save_dir = Path(save_dir) | |
save_path = save_dir.joinpath(f"rank_{local_rank}_output.json") | |
torch.cuda.set_device(local_rank) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).cuda() | |
if fp16: | |
model = model.half() | |
# determine if we need to increase num_beams | |
use_task_specific_params(model, task) # update config with task specific params | |
num_beams = generate_kwargs.pop("num_beams", model.config.num_beams) # AttributeError risk? | |
if num_return_sequences > num_beams: | |
num_beams = num_return_sequences | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. | |
if max_source_length is None: | |
max_source_length = tokenizer.model_max_length | |
if prefix is None: | |
prefix = prefix or getattr(model.config, "prefix", "") or "" | |
ds = Seq2SeqDataset( | |
tokenizer, | |
data_dir, | |
max_source_length, | |
max_target_length=1024, | |
type_path=type_path, | |
n_obs=n_obs, | |
prefix=prefix, | |
**dataset_kwargs, | |
) | |
# I set shuffle=True for a more accurate progress bar. | |
# If all the longest samples are first, the prog bar estimate is too high at the beginning. | |
sampler = ds.make_sortish_sampler(bs, distributed=True, add_extra_examples=False, shuffle=True) | |
data_loader = DataLoader(ds, sampler=sampler, batch_size=bs, collate_fn=ds.collate_fn) | |
results = [] | |
for batch in tqdm(data_loader): | |
summaries = model.generate( | |
input_ids=batch["input_ids"].to(model.device), | |
attention_mask=batch["attention_mask"].to(model.device), | |
num_return_sequences=num_return_sequences, | |
num_beams=num_beams, | |
**generate_kwargs, | |
) | |
preds = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
ids = batch["ids"] | |
if num_return_sequences > 1: | |
preds = chunks(preds, num_return_sequences) # batch size chunks, each of size num_return_seq | |
for i, pred in enumerate(preds): | |
results.append({"pred": pred, "id": ids[i].item()}) | |
save_json(results, save_path) | |
return results, sampler.num_replicas | |
def run_generate(): | |
parser = argparse.ArgumentParser( | |
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" | |
) | |
parser.add_argument("--data_dir", type=str, help="like cnn_dm/test.source") | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
help="like facebook/bart-large-cnn,t5-base, etc.", | |
default="sshleifer/distilbart-xsum-12-3", | |
) | |
parser.add_argument("--save_dir", type=str, help="where to save", default="tmp_gen") | |
parser.add_argument("--max_source_length", type=int, default=None) | |
parser.add_argument( | |
"--type_path", type=str, default="test", help="which subset to evaluate typically train/val/test" | |
) | |
parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") | |
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") | |
parser.add_argument( | |
"--local_rank", type=int, default=-1, required=False, help="should be passed by distributed.launch" | |
) | |
parser.add_argument( | |
"--n_obs", type=int, default=None, required=False, help="How many observations. Defaults to all." | |
) | |
parser.add_argument( | |
"--num_return_sequences", type=int, default=1, required=False, help="How many sequences to return" | |
) | |
parser.add_argument( | |
"--sync_timeout", | |
type=int, | |
default=600, | |
required=False, | |
help="How long should master process wait for other processes to finish.", | |
) | |
parser.add_argument("--src_lang", type=str, default=None, required=False) | |
parser.add_argument("--tgt_lang", type=str, default=None, required=False) | |
parser.add_argument( | |
"--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples" | |
) | |
parser.add_argument("--fp16", action="store_true") | |
parser.add_argument("--debug", action="store_true") | |
start_time = time.time() | |
args, rest = parser.parse_known_args() | |
generate_kwargs = parse_numeric_n_bool_cl_kwargs(rest) | |
if generate_kwargs and args.local_rank <= 0: | |
print(f"parsed the following generate kwargs: {generate_kwargs}") | |
json_save_dir = Path(args.save_dir + "_tmp") | |
Path(json_save_dir).mkdir(exist_ok=True) # this handles locking. | |
intermediate_files = list(json_save_dir.glob("rank_*.json")) | |
if intermediate_files: | |
raise ValueError(f"Found files at {json_save_dir} please move or remove them.") | |
# In theory, a node could finish and save before another node hits this. If this happens, we can address later. | |
dataset_kwargs = {} | |
if args.src_lang is not None: | |
dataset_kwargs["src_lang"] = args.src_lang | |
if args.tgt_lang is not None: | |
dataset_kwargs["tgt_lang"] = args.tgt_lang | |
Path(args.save_dir).mkdir(exist_ok=True) | |
results, num_replicas = eval_data_dir( | |
args.data_dir, | |
json_save_dir, | |
args.model_name, | |
type_path=args.type_path, | |
bs=args.bs, | |
fp16=args.fp16, | |
task=args.task, | |
local_rank=args.local_rank, | |
n_obs=args.n_obs, | |
max_source_length=args.max_source_length, | |
num_return_sequences=args.num_return_sequences, | |
prefix=args.prefix, | |
dataset_kwargs=dataset_kwargs, | |
**generate_kwargs, | |
) | |
if args.local_rank <= 0: | |
save_dir = Path(args.save_dir) | |
save_dir.mkdir(exist_ok=True) | |
partial_results = gather_results_from_each_node(num_replicas, json_save_dir, args.sync_timeout) | |
preds = combine_partial_results(partial_results) | |
if args.num_return_sequences > 1: | |
save_path = save_dir.joinpath("pseudolabel_results.json") | |
print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/") | |
save_json(preds, save_path) | |
return | |
tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target") | |
with open(tgt_file) as f: | |
labels = [x.rstrip() for x in f.readlines()][: len(preds)] | |
# Calculate metrics, save metrics, and save _generations.txt | |
calc_bleu = "translation" in args.task | |
score_fn = calculate_bleu if calc_bleu else calculate_rouge | |
metric_name = "bleu" if calc_bleu else "rouge" | |
metrics: Dict = score_fn(preds, labels) | |
metrics["n_obs"] = len(preds) | |
runtime = time.time() - start_time | |
metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4) | |
metrics["n_gpus"] = num_replicas | |
# TODO(@stas00): add whatever metadata to metrics | |
metrics_save_path = save_dir.joinpath(f"{args.type_path}_{metric_name}.json") | |
save_json(metrics, metrics_save_path, indent=None) | |
print(metrics) | |
write_txt_file(preds, save_dir.joinpath(f"{args.type_path}_generations.txt")) | |
if args.debug: | |
write_txt_file(labels, save_dir.joinpath(f"{args.type_path}.target")) | |
else: | |
shutil.rmtree(json_save_dir) | |
def combine_partial_results(partial_results) -> List: | |
"""Concatenate partial results into one file, then sort it by id.""" | |
records = [] | |
for partial_result in partial_results: | |
records.extend(partial_result) | |
records = sorted(records, key=lambda x: x["id"]) | |
preds = [x["pred"] for x in records] | |
return preds | |
def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]: | |
# WAIT FOR lots of .json files | |
start_wait = time.time() | |
logger.info("waiting for all nodes to finish") | |
json_data = None | |
while (time.time() - start_wait) < timeout: | |
json_files = list(save_dir.glob("rank_*.json")) | |
if len(json_files) < num_replicas: | |
continue | |
try: | |
# make sure all json files are fully saved | |
json_data = lmap(load_json, json_files) | |
return json_data | |
except JSONDecodeError: | |
continue | |
else: | |
raise TimeoutError("Rank 0 gave up on waiting for other processes") | |
# Unreachable | |
if __name__ == "__main__": | |
# Usage for MT: | |
run_generate() | |