Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ | |
import csv | |
import glob | |
import json | |
import logging | |
import os | |
from dataclasses import dataclass | |
from enum import Enum | |
from typing import List, Optional | |
import tqdm | |
from filelock import FileLock | |
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available | |
logger = logging.getLogger(__name__) | |
class InputExample: | |
""" | |
A single training/test example for multiple choice | |
Args: | |
example_id: Unique id for the example. | |
question: string. The untokenized text of the second sequence (question). | |
contexts: list of str. The untokenized text of the first sequence (context of corresponding question). | |
endings: list of str. multiple choice's options. Its length must be equal to contexts' length. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
example_id: str | |
question: str | |
contexts: List[str] | |
endings: List[str] | |
label: Optional[str] | |
class InputFeatures: | |
""" | |
A single set of features of data. | |
Property names are the same names as the corresponding inputs to a model. | |
""" | |
example_id: str | |
input_ids: List[List[int]] | |
attention_mask: Optional[List[List[int]]] | |
token_type_ids: Optional[List[List[int]]] | |
label: Optional[int] | |
class Split(Enum): | |
train = "train" | |
dev = "dev" | |
test = "test" | |
if is_torch_available(): | |
import torch | |
from torch.utils.data import Dataset | |
class MultipleChoiceDataset(Dataset): | |
""" | |
This will be superseded by a framework-agnostic approach | |
soon. | |
""" | |
features: List[InputFeatures] | |
def __init__( | |
self, | |
data_dir: str, | |
tokenizer: PreTrainedTokenizer, | |
task: str, | |
max_seq_length: Optional[int] = None, | |
overwrite_cache=False, | |
mode: Split = Split.train, | |
): | |
processor = processors[task]() | |
cached_features_file = os.path.join( | |
data_dir, | |
"cached_{}_{}_{}_{}".format( | |
mode.value, | |
tokenizer.__class__.__name__, | |
str(max_seq_length), | |
task, | |
), | |
) | |
# Make sure only the first process in distributed training processes the dataset, | |
# and the others will use the cache. | |
lock_path = cached_features_file + ".lock" | |
with FileLock(lock_path): | |
if os.path.exists(cached_features_file) and not overwrite_cache: | |
logger.info(f"Loading features from cached file {cached_features_file}") | |
self.features = torch.load(cached_features_file) | |
else: | |
logger.info(f"Creating features from dataset file at {data_dir}") | |
label_list = processor.get_labels() | |
if mode == Split.dev: | |
examples = processor.get_dev_examples(data_dir) | |
elif mode == Split.test: | |
examples = processor.get_test_examples(data_dir) | |
else: | |
examples = processor.get_train_examples(data_dir) | |
logger.info("Training examples: %s", len(examples)) | |
self.features = convert_examples_to_features( | |
examples, | |
label_list, | |
max_seq_length, | |
tokenizer, | |
) | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(self.features, cached_features_file) | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, i) -> InputFeatures: | |
return self.features[i] | |
if is_tf_available(): | |
import tensorflow as tf | |
class TFMultipleChoiceDataset: | |
""" | |
This will be superseded by a framework-agnostic approach | |
soon. | |
""" | |
features: List[InputFeatures] | |
def __init__( | |
self, | |
data_dir: str, | |
tokenizer: PreTrainedTokenizer, | |
task: str, | |
max_seq_length: Optional[int] = 128, | |
overwrite_cache=False, | |
mode: Split = Split.train, | |
): | |
processor = processors[task]() | |
logger.info(f"Creating features from dataset file at {data_dir}") | |
label_list = processor.get_labels() | |
if mode == Split.dev: | |
examples = processor.get_dev_examples(data_dir) | |
elif mode == Split.test: | |
examples = processor.get_test_examples(data_dir) | |
else: | |
examples = processor.get_train_examples(data_dir) | |
logger.info("Training examples: %s", len(examples)) | |
self.features = convert_examples_to_features( | |
examples, | |
label_list, | |
max_seq_length, | |
tokenizer, | |
) | |
def gen(): | |
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
yield ( | |
{ | |
"example_id": 0, | |
"input_ids": ex.input_ids, | |
"attention_mask": ex.attention_mask, | |
"token_type_ids": ex.token_type_ids, | |
}, | |
ex.label, | |
) | |
self.dataset = tf.data.Dataset.from_generator( | |
gen, | |
( | |
{ | |
"example_id": tf.int32, | |
"input_ids": tf.int32, | |
"attention_mask": tf.int32, | |
"token_type_ids": tf.int32, | |
}, | |
tf.int64, | |
), | |
( | |
{ | |
"example_id": tf.TensorShape([]), | |
"input_ids": tf.TensorShape([None, None]), | |
"attention_mask": tf.TensorShape([None, None]), | |
"token_type_ids": tf.TensorShape([None, None]), | |
}, | |
tf.TensorShape([]), | |
), | |
) | |
def get_dataset(self): | |
self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) | |
return self.dataset | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, i) -> InputFeatures: | |
return self.features[i] | |
class DataProcessor: | |
"""Base class for data converters for multiple choice data sets.""" | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_test_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the test set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
class RaceProcessor(DataProcessor): | |
"""Processor for the RACE data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
high = os.path.join(data_dir, "train/high") | |
middle = os.path.join(data_dir, "train/middle") | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
high = os.path.join(data_dir, "dev/high") | |
middle = os.path.join(data_dir, "dev/middle") | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, "dev") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} test".format(data_dir)) | |
high = os.path.join(data_dir, "test/high") | |
middle = os.path.join(data_dir, "test/middle") | |
high = self._read_txt(high) | |
middle = self._read_txt(middle) | |
return self._create_examples(high + middle, "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_txt(self, input_dir): | |
lines = [] | |
files = glob.glob(input_dir + "/*txt") | |
for file in tqdm.tqdm(files, desc="read files"): | |
with open(file, "r", encoding="utf-8") as fin: | |
data_raw = json.load(fin) | |
data_raw["race_id"] = file | |
lines.append(data_raw) | |
return lines | |
def _create_examples(self, lines, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for _, data_raw in enumerate(lines): | |
race_id = "%s-%s" % (set_type, data_raw["race_id"]) | |
article = data_raw["article"] | |
for i in range(len(data_raw["answers"])): | |
truth = str(ord(data_raw["answers"][i]) - ord("A")) | |
question = data_raw["questions"][i] | |
options = data_raw["options"][i] | |
examples.append( | |
InputExample( | |
example_id=race_id, | |
question=question, | |
contexts=[article, article, article, article], # this is not efficient but convenient | |
endings=[options[0], options[1], options[2], options[3]], | |
label=truth, | |
) | |
) | |
return examples | |
class SynonymProcessor(DataProcessor): | |
"""Processor for the Synonym data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3", "4"] | |
def _read_csv(self, input_file): | |
with open(input_file, "r", encoding="utf-8") as f: | |
return list(csv.reader(f)) | |
def _create_examples(self, lines: List[List[str]], type: str): | |
"""Creates examples for the training and dev sets.""" | |
examples = [ | |
InputExample( | |
example_id=line[0], | |
question="", # in the swag dataset, the | |
# common beginning of each | |
# choice is stored in "sent2". | |
contexts=[line[1], line[1], line[1], line[1], line[1]], | |
endings=[line[2], line[3], line[4], line[5], line[6]], | |
label=line[7], | |
) | |
for line in lines # we skip the line with the column names | |
] | |
return examples | |
class SwagProcessor(DataProcessor): | |
"""Processor for the SWAG data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
raise ValueError( | |
"For swag testing, the input file does not contain a label column. It can not be tested in current code" | |
"setting!" | |
) | |
return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_csv(self, input_file): | |
with open(input_file, "r", encoding="utf-8") as f: | |
return list(csv.reader(f)) | |
def _create_examples(self, lines: List[List[str]], type: str): | |
"""Creates examples for the training and dev sets.""" | |
if type == "train" and lines[0][-1] != "label": | |
raise ValueError("For training, the input file must contain a label column.") | |
examples = [ | |
InputExample( | |
example_id=line[2], | |
question=line[5], # in the swag dataset, the | |
# common beginning of each | |
# choice is stored in "sent2". | |
contexts=[line[4], line[4], line[4], line[4]], | |
endings=[line[7], line[8], line[9], line[10]], | |
label=line[11], | |
) | |
for line in lines[1:] # we skip the line with the column names | |
] | |
return examples | |
class ArcProcessor(DataProcessor): | |
"""Processor for the ARC data set (request from allennlp).""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} train".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
logger.info("LOOKING AT {} dev".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") | |
def get_test_examples(self, data_dir): | |
logger.info("LOOKING AT {} test".format(data_dir)) | |
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") | |
def get_labels(self): | |
"""See base class.""" | |
return ["0", "1", "2", "3"] | |
def _read_json(self, input_file): | |
with open(input_file, "r", encoding="utf-8") as fin: | |
lines = fin.readlines() | |
return lines | |
def _create_examples(self, lines, type): | |
"""Creates examples for the training and dev sets.""" | |
# There are two types of labels. They should be normalized | |
def normalize(truth): | |
if truth in "ABCD": | |
return ord(truth) - ord("A") | |
elif truth in "1234": | |
return int(truth) - 1 | |
else: | |
logger.info("truth ERROR! %s", str(truth)) | |
return None | |
examples = [] | |
three_choice = 0 | |
four_choice = 0 | |
five_choice = 0 | |
other_choices = 0 | |
# we deleted example which has more than or less than four choices | |
for line in tqdm.tqdm(lines, desc="read arc data"): | |
data_raw = json.loads(line.strip("\n")) | |
if len(data_raw["question"]["choices"]) == 3: | |
three_choice += 1 | |
continue | |
elif len(data_raw["question"]["choices"]) == 5: | |
five_choice += 1 | |
continue | |
elif len(data_raw["question"]["choices"]) != 4: | |
other_choices += 1 | |
continue | |
four_choice += 1 | |
truth = str(normalize(data_raw["answerKey"])) | |
assert truth != "None" | |
question_choices = data_raw["question"] | |
question = question_choices["stem"] | |
id = data_raw["id"] | |
options = question_choices["choices"] | |
if len(options) == 4: | |
examples.append( | |
InputExample( | |
example_id=id, | |
question=question, | |
contexts=[ | |
options[0]["para"].replace("_", ""), | |
options[1]["para"].replace("_", ""), | |
options[2]["para"].replace("_", ""), | |
options[3]["para"].replace("_", ""), | |
], | |
endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], | |
label=truth, | |
) | |
) | |
if type == "train": | |
assert len(examples) > 1 | |
assert examples[0].label is not None | |
logger.info("len examples: %s}", str(len(examples))) | |
logger.info("Three choices: %s", str(three_choice)) | |
logger.info("Five choices: %s", str(five_choice)) | |
logger.info("Other choices: %s", str(other_choices)) | |
logger.info("four choices: %s", str(four_choice)) | |
return examples | |
def convert_examples_to_features( | |
examples: List[InputExample], | |
label_list: List[str], | |
max_length: int, | |
tokenizer: PreTrainedTokenizer, | |
) -> List[InputFeatures]: | |
""" | |
Loads a data file into a list of `InputFeatures` | |
""" | |
label_map = {label: i for i, label in enumerate(label_list)} | |
features = [] | |
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
choices_inputs = [] | |
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): | |
text_a = context | |
if example.question.find("_") != -1: | |
# this is for cloze question | |
text_b = example.question.replace("_", ending) | |
else: | |
text_b = example.question + " " + ending | |
inputs = tokenizer( | |
text_a, | |
text_b, | |
add_special_tokens=True, | |
max_length=max_length, | |
padding="max_length", | |
truncation=True, | |
return_overflowing_tokens=True, | |
) | |
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0: | |
logger.info( | |
"Attention! you are cropping tokens (swag task is ok). " | |
"If you are training ARC and RACE and you are poping question + options," | |
"you need to try to use a bigger max seq length!" | |
) | |
choices_inputs.append(inputs) | |
label = label_map[example.label] | |
input_ids = [x["input_ids"] for x in choices_inputs] | |
attention_mask = ( | |
[x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None | |
) | |
token_type_ids = ( | |
[x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None | |
) | |
features.append( | |
InputFeatures( | |
example_id=example.example_id, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
label=label, | |
) | |
) | |
for f in features[:2]: | |
logger.info("*** Example ***") | |
logger.info("feature: %s" % f) | |
return features | |
processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor} | |
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5} | |