Li
add transformers
455a40f
raw
history blame
20.9 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """
import csv
import glob
import json
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional
import tqdm
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class InputExample:
"""
A single training/test example for multiple choice
Args:
example_id: Unique id for the example.
question: string. The untokenized text of the second sequence (question).
contexts: list of str. The untokenized text of the first sequence (context of corresponding question).
endings: list of str. multiple choice's options. Its length must be equal to contexts' length.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
example_id: str
question: str
contexts: List[str]
endings: List[str]
label: Optional[str]
@dataclass(frozen=True)
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
"""
example_id: str
input_ids: List[List[int]]
attention_mask: Optional[List[List[int]]]
token_type_ids: Optional[List[List[int]]]
label: Optional[int]
class Split(Enum):
train = "train"
dev = "dev"
test = "test"
if is_torch_available():
import torch
from torch.utils.data import Dataset
class MultipleChoiceDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach
soon.
"""
features: List[InputFeatures]
def __init__(
self,
data_dir: str,
tokenizer: PreTrainedTokenizer,
task: str,
max_seq_length: Optional[int] = None,
overwrite_cache=False,
mode: Split = Split.train,
):
processor = processors[task]()
cached_features_file = os.path.join(
data_dir,
"cached_{}_{}_{}_{}".format(
mode.value,
tokenizer.__class__.__name__,
str(max_seq_length),
task,
),
)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
logger.info(f"Loading features from cached file {cached_features_file}")
self.features = torch.load(cached_features_file)
else:
logger.info(f"Creating features from dataset file at {data_dir}")
label_list = processor.get_labels()
if mode == Split.dev:
examples = processor.get_dev_examples(data_dir)
elif mode == Split.test:
examples = processor.get_test_examples(data_dir)
else:
examples = processor.get_train_examples(data_dir)
logger.info("Training examples: %s", len(examples))
self.features = convert_examples_to_features(
examples,
label_list,
max_seq_length,
tokenizer,
)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(self.features, cached_features_file)
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
if is_tf_available():
import tensorflow as tf
class TFMultipleChoiceDataset:
"""
This will be superseded by a framework-agnostic approach
soon.
"""
features: List[InputFeatures]
def __init__(
self,
data_dir: str,
tokenizer: PreTrainedTokenizer,
task: str,
max_seq_length: Optional[int] = 128,
overwrite_cache=False,
mode: Split = Split.train,
):
processor = processors[task]()
logger.info(f"Creating features from dataset file at {data_dir}")
label_list = processor.get_labels()
if mode == Split.dev:
examples = processor.get_dev_examples(data_dir)
elif mode == Split.test:
examples = processor.get_test_examples(data_dir)
else:
examples = processor.get_train_examples(data_dir)
logger.info("Training examples: %s", len(examples))
self.features = convert_examples_to_features(
examples,
label_list,
max_seq_length,
tokenizer,
)
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
self.dataset = tf.data.Dataset.from_generator(
gen,
(
{
"example_id": tf.int32,
"input_ids": tf.int32,
"attention_mask": tf.int32,
"token_type_ids": tf.int32,
},
tf.int64,
),
(
{
"example_id": tf.TensorShape([]),
"input_ids": tf.TensorShape([None, None]),
"attention_mask": tf.TensorShape([None, None]),
"token_type_ids": tf.TensorShape([None, None]),
},
tf.TensorShape([]),
),
)
def get_dataset(self):
self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features)))
return self.dataset
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
class DataProcessor:
"""Base class for data converters for multiple choice data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the test set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
class RaceProcessor(DataProcessor):
"""Processor for the RACE data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
high = os.path.join(data_dir, "train/high")
middle = os.path.join(data_dir, "train/middle")
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
high = os.path.join(data_dir, "dev/high")
middle = os.path.join(data_dir, "dev/middle")
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} test".format(data_dir))
high = os.path.join(data_dir, "test/high")
middle = os.path.join(data_dir, "test/middle")
high = self._read_txt(high)
middle = self._read_txt(middle)
return self._create_examples(high + middle, "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_txt(self, input_dir):
lines = []
files = glob.glob(input_dir + "/*txt")
for file in tqdm.tqdm(files, desc="read files"):
with open(file, "r", encoding="utf-8") as fin:
data_raw = json.load(fin)
data_raw["race_id"] = file
lines.append(data_raw)
return lines
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for _, data_raw in enumerate(lines):
race_id = "%s-%s" % (set_type, data_raw["race_id"])
article = data_raw["article"]
for i in range(len(data_raw["answers"])):
truth = str(ord(data_raw["answers"][i]) - ord("A"))
question = data_raw["questions"][i]
options = data_raw["options"][i]
examples.append(
InputExample(
example_id=race_id,
question=question,
contexts=[article, article, article, article], # this is not efficient but convenient
endings=[options[0], options[1], options[2], options[3]],
label=truth,
)
)
return examples
class SynonymProcessor(DataProcessor):
"""Processor for the Synonym data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3", "4"]
def _read_csv(self, input_file):
with open(input_file, "r", encoding="utf-8") as f:
return list(csv.reader(f))
def _create_examples(self, lines: List[List[str]], type: str):
"""Creates examples for the training and dev sets."""
examples = [
InputExample(
example_id=line[0],
question="", # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
contexts=[line[1], line[1], line[1], line[1], line[1]],
endings=[line[2], line[3], line[4], line[5], line[6]],
label=line[7],
)
for line in lines # we skip the line with the column names
]
return examples
class SwagProcessor(DataProcessor):
"""Processor for the SWAG data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
raise ValueError(
"For swag testing, the input file does not contain a label column. It can not be tested in current code"
"setting!"
)
return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_csv(self, input_file):
with open(input_file, "r", encoding="utf-8") as f:
return list(csv.reader(f))
def _create_examples(self, lines: List[List[str]], type: str):
"""Creates examples for the training and dev sets."""
if type == "train" and lines[0][-1] != "label":
raise ValueError("For training, the input file must contain a label column.")
examples = [
InputExample(
example_id=line[2],
question=line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
contexts=[line[4], line[4], line[4], line[4]],
endings=[line[7], line[8], line[9], line[10]],
label=line[11],
)
for line in lines[1:] # we skip the line with the column names
]
return examples
class ArcProcessor(DataProcessor):
"""Processor for the ARC data set (request from allennlp)."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")
def get_test_examples(self, data_dir):
logger.info("LOOKING AT {} test".format(data_dir))
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1", "2", "3"]
def _read_json(self, input_file):
with open(input_file, "r", encoding="utf-8") as fin:
lines = fin.readlines()
return lines
def _create_examples(self, lines, type):
"""Creates examples for the training and dev sets."""
# There are two types of labels. They should be normalized
def normalize(truth):
if truth in "ABCD":
return ord(truth) - ord("A")
elif truth in "1234":
return int(truth) - 1
else:
logger.info("truth ERROR! %s", str(truth))
return None
examples = []
three_choice = 0
four_choice = 0
five_choice = 0
other_choices = 0
# we deleted example which has more than or less than four choices
for line in tqdm.tqdm(lines, desc="read arc data"):
data_raw = json.loads(line.strip("\n"))
if len(data_raw["question"]["choices"]) == 3:
three_choice += 1
continue
elif len(data_raw["question"]["choices"]) == 5:
five_choice += 1
continue
elif len(data_raw["question"]["choices"]) != 4:
other_choices += 1
continue
four_choice += 1
truth = str(normalize(data_raw["answerKey"]))
assert truth != "None"
question_choices = data_raw["question"]
question = question_choices["stem"]
id = data_raw["id"]
options = question_choices["choices"]
if len(options) == 4:
examples.append(
InputExample(
example_id=id,
question=question,
contexts=[
options[0]["para"].replace("_", ""),
options[1]["para"].replace("_", ""),
options[2]["para"].replace("_", ""),
options[3]["para"].replace("_", ""),
],
endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]],
label=truth,
)
)
if type == "train":
assert len(examples) > 1
assert examples[0].label is not None
logger.info("len examples: %s}", str(len(examples)))
logger.info("Three choices: %s", str(three_choice))
logger.info("Five choices: %s", str(five_choice))
logger.info("Other choices: %s", str(other_choices))
logger.info("four choices: %s", str(four_choice))
return examples
def convert_examples_to_features(
examples: List[InputExample],
label_list: List[str],
max_length: int,
tokenizer: PreTrainedTokenizer,
) -> List[InputFeatures]:
"""
Loads a data file into a list of `InputFeatures`
"""
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
choices_inputs = []
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)):
text_a = context
if example.question.find("_") != -1:
# this is for cloze question
text_b = example.question.replace("_", ending)
else:
text_b = example.question + " " + ending
inputs = tokenizer(
text_a,
text_b,
add_special_tokens=True,
max_length=max_length,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
logger.info(
"Attention! you are cropping tokens (swag task is ok). "
"If you are training ARC and RACE and you are poping question + options,"
"you need to try to use a bigger max seq length!"
)
choices_inputs.append(inputs)
label = label_map[example.label]
input_ids = [x["input_ids"] for x in choices_inputs]
attention_mask = (
[x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None
)
token_type_ids = (
[x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None
)
features.append(
InputFeatures(
example_id=example.example_id,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label=label,
)
)
for f in features[:2]:
logger.info("*** Example ***")
logger.info("feature: %s" % f)
return features
processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor}
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5}