Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for question answering. | |
""" | |
# You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import time | |
from dataclasses import asdict, dataclass, field | |
from enum import Enum | |
from pathlib import Path | |
from typing import Any, Callable, Dict, Optional, Tuple | |
import datasets | |
import evaluate | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import optax | |
from datasets import load_dataset | |
from flax import struct, traverse_util | |
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard | |
from huggingface_hub import Repository, create_repo | |
from tqdm import tqdm | |
from utils_qa import postprocess_qa_predictions | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
EvalPrediction, | |
FlaxAutoModelForQuestionAnswering, | |
HfArgumentParser, | |
PreTrainedTokenizerFast, | |
is_tensorboard_available, | |
) | |
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry | |
logger = logging.getLogger(__name__) | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
Array = Any | |
Dataset = datasets.arrow_dataset.Dataset | |
PRNGKey = Any | |
# region Arguments | |
class TrainingArguments: | |
output_dir: str = field( | |
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
) | |
overwrite_output_dir: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Overwrite the content of the output directory. " | |
"Use this to continue training if output_dir points to a checkpoint directory." | |
) | |
}, | |
) | |
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) | |
per_device_train_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
) | |
per_device_eval_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
) | |
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
push_to_hub: bool = field( | |
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
) | |
hub_model_id: str = field( | |
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
) | |
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
def __post_init__(self): | |
if self.output_dir is not None: | |
self.output_dir = os.path.expanduser(self.output_dir) | |
def to_dict(self): | |
""" | |
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
the token values by removing their value. | |
""" | |
d = asdict(self) | |
for k, v in d.items(): | |
if isinstance(v, Enum): | |
d[k] = v.value | |
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
d[k] = [x.value for x in v] | |
if k.endswith("_token"): | |
d[k] = f"<{k.upper()}>" | |
return d | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": ( | |
"Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
" `[float32, float16, bfloat16]`." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: int = field( | |
default=384, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
" batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
version_2_with_negative: bool = field( | |
default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
) | |
null_score_diff_threshold: float = field( | |
default=0.0, | |
metadata={ | |
"help": ( | |
"The threshold used to select the null answer: if the best answer has a score that is less than " | |
"the score of the null answer minus this threshold, the null answer is selected for this example. " | |
"Only useful when `version_2_with_negative=True`." | |
) | |
}, | |
) | |
doc_stride: int = field( | |
default=128, | |
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
) | |
n_best_size: int = field( | |
default=20, | |
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
) | |
max_answer_length: int = field( | |
default=30, | |
metadata={ | |
"help": ( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
) | |
}, | |
) | |
def __post_init__(self): | |
if ( | |
self.dataset_name is None | |
and self.train_file is None | |
and self.validation_file is None | |
and self.test_file is None | |
): | |
raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
if self.test_file is not None: | |
extension = self.test_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
# endregion | |
# region Create a train state | |
def create_train_state( | |
model: FlaxAutoModelForQuestionAnswering, | |
learning_rate_fn: Callable[[int], float], | |
num_labels: int, | |
training_args: TrainingArguments, | |
) -> train_state.TrainState: | |
"""Create initial training state.""" | |
class TrainState(train_state.TrainState): | |
"""Train state with an Optax optimizer. | |
The two functions below differ depending on whether the task is classification | |
or regression. | |
Args: | |
logits_fn: Applied to last layer to obtain the logits. | |
loss_fn: Function to compute the loss. | |
""" | |
logits_fn: Callable = struct.field(pytree_node=False) | |
loss_fn: Callable = struct.field(pytree_node=False) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
# find out all LayerNorm parameters | |
layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
layer_norm_named_params = { | |
layer[-2:] | |
for layer_norm_name in layer_norm_candidates | |
for layer in flat_params.keys() | |
if layer_norm_name in "".join(layer).lower() | |
} | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
tx = optax.adamw( | |
learning_rate=learning_rate_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
def cross_entropy_loss(logits, labels): | |
start_loss = optax.softmax_cross_entropy(logits[0], onehot(labels[0], num_classes=num_labels)) | |
end_loss = optax.softmax_cross_entropy(logits[1], onehot(labels[1], num_classes=num_labels)) | |
xentropy = (start_loss + end_loss) / 2.0 | |
return jnp.mean(xentropy) | |
return TrainState.create( | |
apply_fn=model.__call__, | |
params=model.params, | |
tx=tx, | |
logits_fn=lambda logits: logits, | |
loss_fn=cross_entropy_loss, | |
) | |
# endregion | |
# region Create learning rate function | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
# endregion | |
# region train data iterator | |
def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): | |
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" | |
steps_per_epoch = len(dataset) // batch_size | |
perms = jax.random.permutation(rng, len(dataset)) | |
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
perms = perms.reshape((steps_per_epoch, batch_size)) | |
for perm in perms: | |
batch = dataset[perm] | |
batch = {k: np.array(v) for k, v in batch.items()} | |
batch = shard(batch) | |
yield batch | |
# endregion | |
# region eval data iterator | |
def eval_data_collator(dataset: Dataset, batch_size: int): | |
"""Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" | |
batch_idx = np.arange(len(dataset)) | |
steps_per_epoch = math.ceil(len(dataset) / batch_size) | |
batch_idx = np.array_split(batch_idx, steps_per_epoch) | |
for idx in batch_idx: | |
batch = dataset[idx] | |
batch = {k: np.array(v) for k, v in batch.items()} | |
yield batch | |
# endregion | |
def main(): | |
# region Argument parsing | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_qa", model_args, data_args, framework="flax") | |
# endregion | |
# region Logging | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# endregion | |
# Handle the repository creation | |
if training_args.push_to_hub: | |
if training_args.hub_model_id is None: | |
repo_name = get_full_repo_name( | |
Path(training_args.output_dir).absolute().name, token=training_args.hub_token | |
) | |
else: | |
repo_name = training_args.hub_model_id | |
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | |
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) | |
# region Load Data | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
# Loading the dataset from local csv or json file. | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
field="data", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# endregion | |
# region Load pretrained model and tokenizer | |
# | |
# Load pretrained model and tokenizer | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=True, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# endregion | |
# region Tokenizer check: this script requires a fast tokenizer. | |
if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
raise ValueError( | |
"This example script only works for models that have a fast tokenizer. Checkout the big table of models at" | |
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" | |
" this requirement" | |
) | |
# endregion | |
# region Preprocessing the datasets | |
# Preprocessing is slightly different for training and evaluation. | |
if training_args.do_train: | |
column_names = raw_datasets["train"].column_names | |
elif training_args.do_eval: | |
column_names = raw_datasets["validation"].column_names | |
else: | |
column_names = raw_datasets["test"].column_names | |
question_column_name = "question" if "question" in column_names else column_names[0] | |
context_column_name = "context" if "context" in column_names else column_names[1] | |
answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
# Padding side determines if we do (question|context) or (context|question). | |
pad_on_right = tokenizer.padding_side == "right" | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
# Training preprocessing | |
def prepare_train_features(examples): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[question_column_name if pad_on_right else context_column_name], | |
examples[context_column_name if pad_on_right else question_column_name], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_length, | |
stride=data_args.doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# The offset mappings will give us a map from token to character position in the original context. This will | |
# help us compute the start_positions and end_positions. | |
offset_mapping = tokenized_examples.pop("offset_mapping") | |
# Let's label those examples! | |
tokenized_examples["start_positions"] = [] | |
tokenized_examples["end_positions"] = [] | |
for i, offsets in enumerate(offset_mapping): | |
# We will label impossible answers with the index of the CLS token. | |
input_ids = tokenized_examples["input_ids"][i] | |
cls_index = input_ids.index(tokenizer.cls_token_id) | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
answers = examples[answer_column_name][sample_index] | |
# If no answers are given, set the cls_index as answer. | |
if len(answers["answer_start"]) == 0: | |
tokenized_examples["start_positions"].append(cls_index) | |
tokenized_examples["end_positions"].append(cls_index) | |
else: | |
# Start/end character index of the answer in the text. | |
start_char = answers["answer_start"][0] | |
end_char = start_char + len(answers["text"][0]) | |
# Start token index of the current span in the text. | |
token_start_index = 0 | |
while sequence_ids[token_start_index] != (1 if pad_on_right else 0): | |
token_start_index += 1 | |
# End token index of the current span in the text. | |
token_end_index = len(input_ids) - 1 | |
while sequence_ids[token_end_index] != (1 if pad_on_right else 0): | |
token_end_index -= 1 | |
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). | |
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): | |
tokenized_examples["start_positions"].append(cls_index) | |
tokenized_examples["end_positions"].append(cls_index) | |
else: | |
# Otherwise move the token_start_index and token_end_index to the two ends of the answer. | |
# Note: we could go after the last offset if the answer is the last word (edge case). | |
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: | |
token_start_index += 1 | |
tokenized_examples["start_positions"].append(token_start_index - 1) | |
while offsets[token_end_index][1] >= end_char: | |
token_end_index -= 1 | |
tokenized_examples["end_positions"].append(token_end_index + 1) | |
return tokenized_examples | |
processed_raw_datasets = {} | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
# We will select sample from whole data if agument is specified | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
# Create train feature from dataset | |
train_dataset = train_dataset.map( | |
prepare_train_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_train_samples is not None: | |
# Number of samples might increase during Feature Creation, We select only specified max samples | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
processed_raw_datasets["train"] = train_dataset | |
# Validation preprocessing | |
def prepare_validation_features(examples): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[question_column_name if pad_on_right else context_column_name], | |
examples[context_column_name if pad_on_right else question_column_name], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_length, | |
stride=data_args.doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
# corresponding example_id and we will store the offset mappings. | |
tokenized_examples["example_id"] = [] | |
for i in range(len(tokenized_examples["input_ids"])): | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
context_index = 1 if pad_on_right else 0 | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
# position is part of the context or not. | |
tokenized_examples["offset_mapping"][i] = [ | |
(o if sequence_ids[k] == context_index else None) | |
for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
] | |
return tokenized_examples | |
if training_args.do_eval: | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_examples = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
# We will select sample from whole data | |
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
eval_examples = eval_examples.select(range(max_eval_samples)) | |
# Validation Feature Creation | |
eval_dataset = eval_examples.map( | |
prepare_validation_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_eval_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
processed_raw_datasets["validation"] = eval_dataset | |
if training_args.do_predict: | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_examples = raw_datasets["test"] | |
if data_args.max_predict_samples is not None: | |
# We will select sample from whole data | |
predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
# Predict Feature Creation | |
predict_dataset = predict_examples.map( | |
prepare_validation_features, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.max_predict_samples is not None: | |
# During Feature creation dataset samples might increase, we will select required samples again | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
processed_raw_datasets["test"] = predict_dataset | |
# endregion | |
# region Metrics and Post-processing: | |
def post_processing_function(examples, features, predictions, stage="eval"): | |
# Post-processing: we match the start logits and end logits to answers in the original context. | |
predictions = postprocess_qa_predictions( | |
examples=examples, | |
features=features, | |
predictions=predictions, | |
version_2_with_negative=data_args.version_2_with_negative, | |
n_best_size=data_args.n_best_size, | |
max_answer_length=data_args.max_answer_length, | |
null_score_diff_threshold=data_args.null_score_diff_threshold, | |
output_dir=training_args.output_dir, | |
prefix=stage, | |
) | |
# Format the result to the format the metric expects. | |
if data_args.version_2_with_negative: | |
formatted_predictions = [ | |
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
] | |
else: | |
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] | |
return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
def compute_metrics(p: EvalPrediction): | |
return metric.compute(predictions=p.predictions, references=p.label_ids) | |
# Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor | |
def create_and_fill_np_array(start_or_end_logits, dataset, max_len): | |
""" | |
Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor | |
Args: | |
start_or_end_logits(:obj:`tensor`): | |
This is the output predictions of the model. We can only enter either start or end logits. | |
eval_dataset: Evaluation dataset | |
max_len(:obj:`int`): | |
The maximum length of the output tensor. ( See the model.eval() part for more details ) | |
""" | |
step = 0 | |
# create a numpy array and fill it with -100. | |
logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float64) | |
# Now since we have create an array now we will populate it with the outputs of the model. | |
for i, output_logit in enumerate(start_or_end_logits): # populate columns | |
# We have to fill it such that we have to take the whole tensor and replace it on the newly created array | |
# And after every iteration we have to change the step | |
batch_size = output_logit.shape[0] | |
cols = output_logit.shape[1] | |
if step + batch_size < len(dataset): | |
logits_concat[step : step + batch_size, :cols] = output_logit | |
else: | |
logits_concat[step:, :cols] = output_logit[: len(dataset) - step] | |
step += batch_size | |
return logits_concat | |
# endregion | |
# region Training steps and logging init | |
train_dataset = processed_raw_datasets["train"] | |
eval_dataset = processed_raw_datasets["validation"] | |
# Log a few random samples from the training set: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
# Define a summary writer | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(training_args.output_dir) | |
summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
def write_train_metric(summary_writer, train_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
def write_eval_metric(summary_writer, eval_metrics, step): | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
num_epochs = int(training_args.num_train_epochs) | |
rng = jax.random.PRNGKey(training_args.seed) | |
dropout_rngs = jax.random.split(rng, jax.local_device_count()) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() | |
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
eval_batch_size = per_device_eval_batch_size * jax.local_device_count() | |
# endregion | |
# region Load model | |
model = FlaxAutoModelForQuestionAnswering.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
) | |
learning_rate_fn = create_learning_rate_fn( | |
len(train_dataset), | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
state = create_train_state(model, learning_rate_fn, num_labels=max_seq_length, training_args=training_args) | |
# endregion | |
# region Define train step functions | |
def train_step( | |
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey | |
) -> Tuple[train_state.TrainState, float]: | |
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" | |
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | |
start_positions = batch.pop("start_positions") | |
end_positions = batch.pop("end_positions") | |
targets = (start_positions, end_positions) | |
def loss_fn(params): | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True) | |
loss = state.loss_fn(logits, targets) | |
return loss | |
grad_fn = jax.value_and_grad(loss_fn) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad) | |
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") | |
return new_state, metrics, new_dropout_rng | |
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) | |
# endregion | |
# region Define eval step functions | |
def eval_step(state, batch): | |
logits = state.apply_fn(**batch, params=state.params, train=False) | |
return state.logits_fn(logits) | |
p_eval_step = jax.pmap(eval_step, axis_name="batch") | |
# endregion | |
# region Define train and eval loop | |
logger.info(f"===== Starting training ({num_epochs} epochs) =====") | |
train_time = 0 | |
# make sure weights are replicated on each device | |
state = replicate(state) | |
train_time = 0 | |
step_per_epoch = len(train_dataset) // train_batch_size | |
total_steps = step_per_epoch * num_epochs | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
for epoch in epochs: | |
train_start = time.time() | |
train_metrics = [] | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
# train | |
for step, batch in enumerate( | |
tqdm( | |
train_data_collator(input_rng, train_dataset, train_batch_size), | |
total=step_per_epoch, | |
desc="Training...", | |
position=1, | |
), | |
1, | |
): | |
state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) | |
train_metrics.append(train_metric) | |
cur_step = epoch * step_per_epoch + step | |
if cur_step % training_args.logging_steps == 0 and cur_step > 0: | |
# Save metrics | |
train_metric = unreplicate(train_metric) | |
train_time += time.time() - train_start | |
if has_tensorboard and jax.process_index() == 0: | |
write_train_metric(summary_writer, train_metrics, train_time, cur_step) | |
epochs.write( | |
f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" | |
f" {train_metric['learning_rate']})" | |
) | |
train_metrics = [] | |
if ( | |
training_args.do_eval | |
and (cur_step % training_args.eval_steps == 0 or cur_step % step_per_epoch == 0) | |
and cur_step > 0 | |
): | |
eval_metrics = {} | |
all_start_logits = [] | |
all_end_logits = [] | |
# evaluate | |
for batch in tqdm( | |
eval_data_collator(eval_dataset, eval_batch_size), | |
total=math.ceil(len(eval_dataset) / eval_batch_size), | |
desc="Evaluating ...", | |
position=2, | |
): | |
_ = batch.pop("example_id") | |
_ = batch.pop("offset_mapping") | |
predictions = pad_shard_unpad(p_eval_step)( | |
state, batch, min_device_batch=per_device_eval_batch_size | |
) | |
start_logits = np.array(predictions[0]) | |
end_logits = np.array(predictions[1]) | |
all_start_logits.append(start_logits) | |
all_end_logits.append(end_logits) | |
max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor | |
# concatenate the numpy array | |
start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) | |
end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) | |
# delete the list of numpy arrays | |
del all_start_logits | |
del all_end_logits | |
outputs_numpy = (start_logits_concat, end_logits_concat) | |
prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) | |
eval_metrics = compute_metrics(prediction) | |
logger.info(f"Step... ({cur_step}/{total_steps} | Evaluation metrics: {eval_metrics})") | |
if has_tensorboard and jax.process_index() == 0: | |
write_eval_metric(summary_writer, eval_metrics, cur_step) | |
if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(unreplicate(state.params)) | |
model.save_pretrained(training_args.output_dir, params=params) | |
tokenizer.save_pretrained(training_args.output_dir) | |
if training_args.push_to_hub: | |
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) | |
epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" | |
# endregion | |
# Eval after training | |
if training_args.do_eval: | |
eval_metrics = {} | |
all_start_logits = [] | |
all_end_logits = [] | |
eval_loader = eval_data_collator(eval_dataset, eval_batch_size) | |
for batch in tqdm( | |
eval_loader, total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2 | |
): | |
_ = batch.pop("example_id") | |
_ = batch.pop("offset_mapping") | |
predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size) | |
start_logits = np.array(predictions[0]) | |
end_logits = np.array(predictions[1]) | |
all_start_logits.append(start_logits) | |
all_end_logits.append(end_logits) | |
max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor | |
# concatenate the numpy array | |
start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) | |
end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) | |
# delete the list of numpy arrays | |
del all_start_logits | |
del all_end_logits | |
outputs_numpy = (start_logits_concat, end_logits_concat) | |
prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) | |
eval_metrics = compute_metrics(prediction) | |
if jax.process_index() == 0: | |
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} | |
path = os.path.join(training_args.output_dir, "eval_results.json") | |
with open(path, "w") as f: | |
json.dump(eval_metrics, f, indent=4, sort_keys=True) | |
if __name__ == "__main__": | |
main() | |