Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline, AutoModel | |
import gradio as gr | |
import re | |
import os | |
import json | |
import chardet | |
from sklearn.metrics import precision_score, recall_score, f1_score | |
import time | |
from functools import lru_cache # 添加这行导入 | |
# ======================== 数据库模块 ======================== | |
from sqlalchemy import create_engine | |
from sqlalchemy.orm import sessionmaker | |
from contextlib import contextmanager | |
import logging | |
import networkx as nx | |
from pyvis.network import Network | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# 配置日志 | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
# 使用SQLAlchemy的连接池来管理数据库连接 | |
DATABASE_URL = "mysql+pymysql://user:password@host/dbname" # 请根据实际情况修改连接字符串 | |
# 创建引擎(连接池) | |
engine = create_engine(DATABASE_URL, pool_size=10, max_overflow=20, echo=True) | |
# 创建session类 | |
Session = sessionmaker(bind=engine) | |
def get_db_connection(): | |
""" | |
使用上下文管理器获取数据库连接 | |
""" | |
session = None | |
try: | |
session = Session() # 从连接池中获取一个连接 | |
logging.info("✅ 数据库连接已建立") | |
yield session # 使用session进行数据库操作 | |
except Exception as e: | |
logging.error(f"❌ 数据库操作时发生错误: {e}") | |
if session: | |
session.rollback() # 回滚事务 | |
finally: | |
if session: | |
try: | |
session.commit() # 提交事务 | |
logging.info("✅ 数据库事务已提交") | |
except Exception as e: | |
logging.error(f"❌ 提交事务时发生错误: {e}") | |
finally: | |
session.close() # 关闭会话,释放连接 | |
logging.info("✅ 数据库连接已关闭") | |
def save_to_db(table, data): | |
""" | |
将数据保存到数据库 | |
:param table: 表名 | |
:param data: 数据字典 | |
""" | |
try: | |
valid_tables = ["entities", "relations"] # 只允许保存到这些表 | |
if table not in valid_tables: | |
raise ValueError(f"Invalid table: {table}") | |
with get_db_connection() as conn: | |
if conn: | |
# 这里的操作假设使用了ORM模型来处理插入,实际根据你数据库的表结构来调整 | |
table_model = get_table_model(table) # 假设你有一个方法来根据表名获得ORM模型 | |
new_record = table_model(**data) | |
conn.add(new_record) | |
conn.commit() # 提交事务 | |
except Exception as e: | |
logging.error(f"❌ 保存数据时发生错误: {e}") | |
return False | |
return True | |
def get_table_model(table_name): | |
""" | |
根据表名获取ORM模型(这里假设你有一个映射到数据库表的模型) | |
:param table_name: 表名 | |
:return: 对应的ORM模型 | |
""" | |
if table_name == "entities": | |
from models import Entity # 假设你已经定义了ORM模型 | |
return Entity | |
elif table_name == "relations": | |
from models import Relation # 假设你已经定义了ORM模型 | |
return Relation | |
else: | |
raise ValueError(f"Unknown table: {table_name}") | |
# ======================== 模型加载 ======================== | |
NER_MODEL_NAME = "uer/roberta-base-finetuned-cluener2020-chinese" | |
def get_ner_pipeline(): | |
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME) | |
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME) | |
return pipeline( | |
"ner", | |
model=model, | |
tokenizer=tokenizer, | |
aggregation_strategy="first" | |
) | |
def get_re_pipeline(): | |
return pipeline( | |
"text2text-generation", | |
model=NER_MODEL_NAME, | |
tokenizer=NER_MODEL_NAME, | |
max_length=512, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
# chatglm_model, chatglm_tokenizer = None, None | |
# use_chatglm = False | |
# try: | |
# chatglm_model_name = "THUDM/chatglm-6b-int4" | |
# chatglm_tokenizer = AutoTokenizer.from_pretrained(chatglm_model_name, trust_remote_code=True) | |
# chatglm_model = AutoModel.from_pretrained( | |
# chatglm_model_name, | |
# trust_remote_code=True, | |
# device_map="cpu", | |
# torch_dtype=torch.float32 | |
# ).eval() | |
# use_chatglm = True | |
# print("✅ 4-bit量化版ChatGLM加载成功") | |
# except Exception as e: | |
# print(f"❌ ChatGLM加载失败: {e}") | |
# ======================== 知识图谱结构 ======================== | |
knowledge_graph = {"entities": set(), "relations": set()} | |
# 优化知识图谱更新函数,增加全局变量更新 | |
def update_knowledge_graph(entities, relations): | |
""" | |
更新知识图谱并保存到数据库 | |
""" | |
global knowledge_graph # 明确声明使用全局变量 | |
# 保存实体 | |
for e in entities: | |
if isinstance(e, dict) and 'text' in e and 'type' in e: | |
save_to_db('entities', { | |
'text': e['text'], | |
'type': e['type'], | |
'start_pos': e.get('start', -1), | |
'end_pos': e.get('end', -1), | |
'source': 'user_input' | |
}) | |
knowledge_graph["entities"].add((e['text'], e['type'])) | |
# 保存关系 | |
for r in relations: | |
if isinstance(r, dict) and all(k in r for k in ("head", "tail", "relation")): | |
save_to_db('relations', { | |
'head_entity': r['head'], | |
'tail_entity': r['tail'], | |
'relation_type': r['relation'], | |
'source_text': '' # 可添加原文关联 | |
}) | |
knowledge_graph["relations"].add((r['head'], r['tail'], r['relation'])) | |
# 优化知识图谱文本格式生成函数,增加排序和去重 | |
def visualize_kg_text(): | |
""" | |
生成知识图谱的文本格式 | |
""" | |
nodes = sorted(set([f"{ent[0]} ({ent[1]})" for ent in knowledge_graph["entities"]])) | |
edges = sorted(set([f"{h} --[{r}]-> {t}" for h, t, r in knowledge_graph["relations"]])) | |
return "\n".join(["📌 实体:"] + nodes + ["", "📎 关系:"] + edges) | |
# 优化知识图谱可视化函数,动态生成HTML文件名,避免覆盖 | |
def visualize_kg_interactive(entities, relations): | |
""" | |
生成交互式的知识图谱可视化 | |
""" | |
# 创建一个新的网络图 | |
net = Network(height="700px", width="100%", bgcolor="#ffffff", font_color="black") | |
# 定义实体类型颜色 | |
entity_colors = { | |
'PER': '#FF6B6B', # 人物-红色 | |
'ORG': '#4ECDC4', # 组织-青色 | |
'LOC': '#45B7D1', # 地点-蓝色 | |
'TIME': '#96CEB4', # 时间-绿色 | |
'TITLE': '#D4A5A5' # 职位-灰色 | |
} | |
# 添加实体节点 | |
for entity in entities: | |
node_color = entity_colors.get(entity['type'], '#D3D3D3') # 默认灰色 | |
net.add_node(entity['text'], | |
label=f"{entity['text']} ({entity['type']})", | |
color=node_color, | |
title=f"类型: {entity['type']}") | |
# 添加关系边 | |
for relation in relations: | |
net.add_edge(relation['head'], | |
relation['tail'], | |
label=relation['relation'], | |
arrows='to') | |
# 设置物理布局 | |
net.set_options(''' | |
var options = { | |
"physics": { | |
"forceAtlas2Based": { | |
"gravitationalConstant": -50, | |
"centralGravity": 0.01, | |
"springLength": 100, | |
"springConstant": 0.08 | |
}, | |
"maxVelocity": 50, | |
"solver": "forceAtlas2Based", | |
"timestep": 0.35, | |
"stabilization": {"iterations": 150} | |
} | |
} | |
''') | |
# 动态生成HTML文件名 | |
timestamp = int(time.time()) | |
html_path = f"knowledge_graph_{timestamp}.html" | |
net.save_graph(html_path) | |
return html_path | |
# ======================== 实体识别(NER) ======================== | |
def merge_adjacent_entities(entities): | |
if not entities: | |
return entities | |
merged = [entities[0]] | |
for entity in entities[1:]: | |
last = merged[-1] | |
# 合并相邻的同类型实体 | |
if (entity["type"] == last["type"] and | |
entity["start"] == last["end"]): | |
last["text"] += entity["text"] | |
last["end"] = entity["end"] | |
else: | |
merged.append(entity) | |
return merged | |
def ner(text, model_type="bert"): | |
start_time = time.time() | |
# 如果使用的是 ChatGLM 模型,执行 ChatGLM 的NER | |
if model_type == "chatglm" and use_chatglm: | |
try: | |
prompt = f"""请从以下文本中识别所有实体,严格按照JSON列表格式返回,每个实体包含text、type、start、end字段: | |
示例:[{{"text": "北京", "type": "LOC", "start": 0, "end": 2}}] | |
文本:{text}""" | |
response = chatglm_model.chat(chatglm_tokenizer, prompt, temperature=0.1) | |
if isinstance(response, tuple): | |
response = response[0] | |
try: | |
json_str = re.search(r'\[.*\]', response, re.DOTALL).group() | |
entities = json.loads(json_str) | |
valid_entities = [ent for ent in entities if all(k in ent for k in ("text", "type", "start", "end"))] | |
return valid_entities, time.time() - start_time | |
except Exception as e: | |
print(f"JSON解析失败: {e}") | |
return [], time.time() - start_time | |
except Exception as e: | |
print(f"ChatGLM调用失败: {e}") | |
return [], time.time() - start_time | |
# 使用BERT NER | |
text_chunks = [text[i:i + 510] for i in range(0, len(text), 510)] # 安全分段 | |
raw_results = [] | |
# 获取NER pipeline | |
ner_pipeline = get_ner_pipeline() # 使用缓存的pipeline | |
for idx, chunk in enumerate(text_chunks): | |
chunk_results = ner_pipeline(chunk) # 使用获取的pipeline | |
for r in chunk_results: | |
r["start"] += idx * 510 | |
r["end"] += idx * 510 | |
raw_results.extend(chunk_results) | |
entities = [{ | |
"text": r['word'].replace(' ', ''), | |
"start": r['start'], | |
"end": r['end'], | |
"type": LABEL_MAPPING.get(r.get('entity_group') or r.get('entity'), r.get('entity_group') or r.get('entity')) | |
} for r in raw_results] | |
entities = merge_adjacent_entities(entities) | |
return entities, time.time() - start_time | |
# ------------------ 实体类型标准化 ------------------ | |
LABEL_MAPPING = { | |
"address": "LOC", | |
"company": "ORG", | |
"name": "PER", | |
"organization": "ORG", | |
"position": "TITLE", | |
"government": "ORG", | |
"scene": "LOC", | |
"book": "WORK", | |
"movie": "WORK", | |
"game": "WORK" | |
} | |
# 提取实体 | |
entities, processing_time = ner("Google in New York met Alice") | |
# 标准化实体类型 | |
for e in entities: | |
e["type"] = LABEL_MAPPING.get(e.get("type"), e.get("type")) | |
# 打印标准化后的实体 | |
print(f"[DEBUG] 标准化后实体列表: {[{'text': e['text'], 'type': e['type']} for e in entities]}") | |
# 打印处理时间 | |
print(f"处理时间: {processing_time:.2f}秒") | |
# ======================== 关系抽取(RE) ======================== | |
def get_re_pipeline(): | |
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL_NAME) | |
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL_NAME) | |
return pipeline( | |
"ner", # 使用NER pipeline | |
model=model, | |
tokenizer=tokenizer, | |
aggregation_strategy="first" | |
) | |
def re_extract(entities, text, use_bert_model=True): | |
if not entities or not text: | |
return [], 0 | |
start_time = time.time() | |
try: | |
# 使用规则匹配关系 | |
relations = [] | |
# 定义关系关键词和对应的实体类型约束 | |
relation_rules = { | |
"位于": { | |
"keywords": ["位于", "在", "坐落于"], | |
"valid_types": { | |
"head": ["ORG", "PER", "LOC"], | |
"tail": ["LOC"] | |
} | |
}, | |
"属于": { | |
"keywords": ["属于", "是", "为"], | |
"valid_types": { | |
"head": ["ORG", "PER"], | |
"tail": ["ORG", "LOC"] | |
} | |
}, | |
"任职于": { | |
"keywords": ["任职于", "就职于", "工作于"], | |
"valid_types": { | |
"head": ["PER"], | |
"tail": ["ORG"] | |
} | |
} | |
} | |
# 预处理实体,去除重复和部分匹配 | |
processed_entities = [] | |
for e in entities: | |
# 检查是否与已有实体重叠 | |
is_subset = False | |
for pe in processed_entities: | |
if e["text"] in pe["text"] and e["text"] != pe["text"]: | |
is_subset = True | |
break | |
if not is_subset: | |
processed_entities.append(e) | |
# 遍历文本中的每个句子 | |
sentences = re.split('[。!?.!?]', text) | |
for sentence in sentences: | |
if not sentence.strip(): | |
continue | |
# 获取当前句子中的实体 | |
sentence_entities = [e for e in processed_entities if e["text"] in sentence] | |
# 检查每个关系类型 | |
for rel_type, rule in relation_rules.items(): | |
for keyword in rule["keywords"]: | |
if keyword in sentence: | |
# 在句子中查找符合类型约束的实体对 | |
for i, ent1 in enumerate(sentence_entities): | |
for j, ent2 in enumerate(sentence_entities): | |
if i != j: # 避免自循环 | |
# 检查实体类型是否符合规则 | |
if (ent1["type"] in rule["valid_types"]["head"] and | |
ent2["type"] in rule["valid_types"]["tail"]): | |
# 检查实体在句子中的位置关系 | |
if sentence.find(ent1["text"]) < sentence.find(ent2["text"]): | |
relations.append({ | |
"head": ent1["text"], | |
"tail": ent2["text"], | |
"relation": rel_type | |
}) | |
# 去重 | |
unique_relations = [] | |
seen = set() | |
for rel in relations: | |
rel_key = (rel["head"], rel["tail"], rel["relation"]) | |
if rel_key not in seen: | |
seen.add(rel_key) | |
unique_relations.append(rel) | |
return unique_relations, time.time() - start_time | |
except Exception as e: | |
logging.error(f"关系抽取失败: {e}") | |
return [], time.time() - start_time | |
# ======================== 文本分析主流程 ======================== | |
def create_knowledge_graph(entities, relations): | |
""" | |
创建知识图谱可视化(文本格式) | |
""" | |
# 设置实体类型的颜色映射 | |
entity_colors = { | |
'PER': '🔴', # 人物-红色 | |
'ORG': '🔵', # 组织-蓝色 | |
'LOC': '🟢', # 地点-绿色 | |
'TIME': '🟡', # 时间-黄色 | |
'TITLE': '🟣' # 职位-紫色 | |
} | |
# 生成实体列表 | |
entity_list = [] | |
for entity in entities: | |
emoji = entity_colors.get(entity['type'], '⚪') | |
entity_list.append(f"{emoji} {entity['text']} ({entity['type']})") | |
# 生成关系列表 | |
relation_list = [] | |
for relation in relations: | |
relation_list.append(f"{relation['head']} --[{relation['relation']}]--> {relation['tail']}") | |
# 生成HTML内容 | |
html_content = f""" | |
<div style="font-family: Arial, sans-serif; padding: 20px;"> | |
<h3 style="color: #333; margin-bottom: 15px;">📌 实体列表:</h3> | |
<div style="margin-bottom: 20px;"> | |
{chr(10).join(f'<div style="margin: 5px 0;">{entity}</div>' for entity in entity_list)} | |
</div> | |
<h3 style="color: #333; margin-bottom: 15px;">📎 关系列表:</h3> | |
<div> | |
{chr(10).join(f'<div style="margin: 5px 0;">{relation}</div>' for relation in relation_list)} | |
</div> | |
<div style="margin-top: 20px; padding: 10px; background-color: #f8f9fa; border-radius: 5px;"> | |
<h4 style="color: #666; margin-bottom: 10px;">图例说明:</h4> | |
<div style="display: flex; gap: 15px; flex-wrap: wrap;"> | |
{chr(10).join(f'<div style="display: flex; align-items: center; gap: 5px;"><span>{emoji}</span><span>{label}</span></div>' for label, emoji in entity_colors.items())} | |
</div> | |
</div> | |
</div> | |
""" | |
return html_content | |
def process_text(text, model_type="bert"): | |
""" | |
处理文本,进行实体识别和关系抽取 | |
""" | |
start_time = time.time() | |
# 实体识别 | |
entities, ner_duration = ner(text, model_type) | |
if not entities: | |
return "", "", "", f"{time.time() - start_time:.2f} 秒" | |
# 关系抽取 | |
relations, re_duration = re_extract(entities, text) | |
# 生成文本格式的实体和关系描述 | |
ent_text = "📌 实体:\n" + "\n".join([f"{e['text']} ({e['type']})" for e in entities]) | |
rel_text = "\n\n📎 关系:\n" + "\n".join([f"{r['head']} --[{r['relation']}]--> {r['tail']}" for r in relations]) | |
# 生成知识图谱 | |
kg_text = create_knowledge_graph(entities, relations) | |
total_duration = time.time() - start_time | |
return ent_text, rel_text, kg_text, f"{total_duration:.2f} 秒" | |
# ======================== 知识图谱可视化 ======================== | |
def generate_kg_image(entities, relations): | |
""" | |
生成知识图谱的图片并保存到临时文件(Hugging Face适配版) | |
""" | |
try: | |
import tempfile | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
import os | |
# === 1. 强制设置中文字体 === | |
plt.rcParams['font.sans-serif'] = ['Noto Sans CJK SC'] # Hugging Face内置字体 | |
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 | |
# === 2. 检查输入数据 === | |
if not entities or not relations: | |
return None | |
# === 3. 创建图谱 === | |
G = nx.DiGraph() | |
entity_colors = { | |
'PER': '#FF6B6B', # 红色 | |
'ORG': '#4ECDC4', # 青色 | |
'LOC': '#45B7D1', # 蓝色 | |
'TIME': '#96CEB4', # 绿色 | |
'TITLE': '#D4A5A5' # 灰色 | |
} | |
# 添加节点(实体) | |
for entity in entities: | |
G.add_node( | |
entity["text"], | |
label=f"{entity['text']} ({entity['type']})", | |
color=entity_colors.get(entity['type'], '#D3D3D3') | |
) | |
# 添加边(关系) | |
for relation in relations: | |
if relation["head"] in G.nodes and relation["tail"] in G.nodes: | |
G.add_edge( | |
relation["head"], | |
relation["tail"], | |
label=relation["relation"] | |
) | |
# === 4. 绘图配置 === | |
plt.figure(figsize=(12, 8), dpi=150) # 降低DPI以节省内存 | |
pos = nx.spring_layout(G, k=0.7, seed=42) # 固定随机种子保证布局稳定 | |
# 绘制节点和边 | |
nx.draw_networkx_nodes( | |
G, pos, | |
node_color=[G.nodes[n]['color'] for n in G.nodes], | |
node_size=800 | |
) | |
nx.draw_networkx_edges( | |
G, pos, | |
edge_color='#888888', | |
width=1.5, | |
arrows=True, | |
arrowsize=20 | |
) | |
# === 5. 绘制中文标签(关键修改点)=== | |
nx.draw_networkx_labels( | |
G, pos, | |
labels={n: G.nodes[n]['label'] for n in G.nodes}, | |
font_size=10, | |
font_family='Noto Sans CJK SC' # 显式指定字体 | |
) | |
nx.draw_networkx_edge_labels( | |
G, pos, | |
edge_labels=nx.get_edge_attributes(G, 'label'), | |
font_size=8, | |
font_family='Noto Sans CJK SC' # 显式指定字体 | |
) | |
plt.axis('off') | |
# === 6. 保存到临时文件 === | |
temp_dir = tempfile.mkdtemp() | |
file_path = os.path.join(temp_dir, "kg.png") | |
plt.savefig(file_path, bbox_inches='tight') | |
plt.close() | |
return file_path | |
except Exception as e: | |
logging.error(f"生成知识图谱图片失败: {str(e)}") | |
return None | |
def process_file(file, model_type="bert"): | |
try: | |
with open(file.name, 'rb') as f: | |
content = f.read() | |
if len(content) > 5 * 1024 * 1024: | |
return "❌ 文件太大", "", "", "", None | |
# 检测编码 | |
try: | |
encoding = chardet.detect(content)['encoding'] or 'utf-8' | |
text = content.decode(encoding) | |
except UnicodeDecodeError: | |
# 尝试常见中文编码 | |
for enc in ['gb18030', 'utf-16', 'big5']: | |
try: | |
text = content.decode(enc) | |
break | |
except: | |
continue | |
else: | |
return "❌ 编码解析失败", "", "", "", None | |
# 调用现有流程处理文本 | |
ent_text, rel_text, kg_text, duration = process_text(text, model_type) | |
# 生成知识图谱图片 | |
entities, _ = ner(text, model_type) | |
relations, _ = re_extract(entities, text) | |
kg_image_path = generate_kg_image(entities, relations) # 返回文件路径 | |
return ent_text, rel_text, kg_text, duration, kg_image_path | |
except Exception as e: | |
logging.error(f"文件处理错误: {str(e)}") | |
return f"❌ 文件处理错误: {str(e)}", "", "", "", None | |
# ======================== 模型评估与自动标注 ======================== | |
def convert_telegram_json_to_eval_format(path): | |
with open(path, encoding="utf-8") as f: | |
data = json.load(f) | |
if isinstance(data, dict) and "text" in data: | |
return [{"text": data["text"], "entities": [ | |
{"text": data["text"][e["start"]:e["end"]]} for e in data.get("entities", []) | |
]}] | |
elif isinstance(data, list): | |
return data | |
elif isinstance(data, dict) and "messages" in data: | |
result = [] | |
for m in data.get("messages", []): | |
if isinstance(m.get("text"), str): | |
result.append({"text": m["text"], "entities": []}) | |
elif isinstance(m.get("text"), list): | |
txt = ''.join([x["text"] if isinstance(x, dict) else x for x in m["text"]]) | |
result.append({"text": txt, "entities": []}) | |
return result | |
return [] | |
def evaluate_ner_model(data, model_type): | |
tp, fp, fn = 0, 0, 0 | |
POS_TOLERANCE = 1 | |
for item in data: | |
text = item["text"] | |
# 处理标注数据 | |
gold_entities = validate_gold_entities([ | |
{ | |
"text": e["text"], | |
"type": LABEL_MAPPING.get(e["type"], e["type"]), | |
"start": e.get("start", -1), | |
"end": e.get("end", -1) | |
} | |
for e in item.get("entities", []) | |
]) | |
# 获取预测结果 | |
pred_entities, _ = ner(text, model_type) | |
# 初始化匹配状态 | |
matched_gold = [False] * len(gold_entities) | |
matched_pred = [False] * len(pred_entities) | |
# 遍历预测实体寻找匹配 | |
for p_idx, p in enumerate(pred_entities): | |
for g_idx, g in enumerate(gold_entities): | |
if not matched_gold[g_idx] and \ | |
p["text"] == g["text"] and \ | |
p["type"] == g["type"] and \ | |
abs(p["start"] - g["start"]) <= POS_TOLERANCE and \ | |
abs(p["end"] - g["end"]) <= POS_TOLERANCE: | |
matched_gold[g_idx] = True | |
matched_pred[p_idx] = True | |
break | |
# 统计指标 | |
tp += sum(matched_pred) | |
fp += len(pred_entities) - sum(matched_pred) | |
fn += len(gold_entities) - sum(matched_gold) | |
# 处理除零情况 | |
precision = tp / (tp + fp) if (tp + fp) > 0 else 0 | |
recall = tp / (tp + fn) if (tp + fn) > 0 else 0 | |
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 | |
return (f"Precision: {precision:.2f}\n" | |
f"Recall: {recall:.2f}\n" | |
f"F1: {f1:.2f}") | |
def auto_annotate(file, model_type): | |
data = convert_telegram_json_to_eval_format(file.name) | |
for item in data: | |
ents, _ = ner(item["text"], model_type) | |
item["entities"] = ents | |
return json.dumps(data, ensure_ascii=False, indent=2) | |
def save_json(json_text): | |
fname = f"auto_labeled_{int(time.time())}.json" | |
with open(fname, "w", encoding="utf-8") as f: | |
f.write(json_text) | |
return fname | |
# ======================== 数据集导入 ======================== | |
def import_dataset(path="D:/云边智算/暗语识别/filtered_results"): | |
import os | |
import json | |
for filename in os.listdir(path): | |
if filename.endswith('.json'): | |
filepath = os.path.join(path, filename) | |
with open(filepath, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
# 调用现有处理流程 | |
process_text(data['text']) | |
print(f"已处理文件: {filename}") | |
# ======================== Gradio 界面 ======================== | |
with gr.Blocks(css=""" | |
.kg-graph {height: 700px; overflow-y: auto;} | |
.warning {color: #ff6b6b;} | |
.error {color: #ff0000; padding: 10px; background-color: #ffeeee; border-radius: 5px;} | |
""") as demo: | |
gr.Markdown("# 🤖 聊天记录实体关系识别系统") | |
with gr.Tab("📄 文本分析"): | |
input_text = gr.Textbox(lines=6, label="输入文本") | |
model_type = gr.Radio(["bert", "chatglm"], value="bert", label="选择模型") | |
btn = gr.Button("开始分析") | |
out1 = gr.Textbox(label="识别实体") | |
out2 = gr.Textbox(label="识别关系") | |
out3 = gr.HTML(label="知识图谱") # 使用HTML组件显示文本格式的知识图谱 | |
out4 = gr.Textbox(label="耗时") | |
btn.click(fn=process_text, inputs=[input_text, model_type], outputs=[out1, out2, out3, out4]) | |
with gr.Tab("🗂 文件分析"): | |
file_input = gr.File(file_types=[".txt", ".json"]) | |
file_btn = gr.Button("上传并分析") | |
fout1, fout2, fout3, fout4, fout5 = gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.Textbox(), gr.File(label="下载知识图谱图片") | |
file_btn.click(fn=process_file, inputs=[file_input, model_type], outputs=[fout1, fout2, fout3, fout4, fout5]) | |
with gr.Tab("📊 模型评估"): | |
eval_file = gr.File(label="上传标注 JSON") | |
eval_model = gr.Radio(["bert", "chatglm"], value="bert") | |
eval_btn = gr.Button("开始评估") | |
eval_output = gr.Textbox(label="评估结果", lines=5) | |
eval_btn.click(lambda f, m: evaluate_ner_model(convert_telegram_json_to_eval_format(f.name), m), | |
[eval_file, eval_model], eval_output) | |
with gr.Tab("✏️ 自动标注"): | |
raw_file = gr.File(label="上传 Telegram 原始 JSON") | |
auto_model = gr.Radio(["bert", "chatglm"], value="bert") | |
auto_btn = gr.Button("自动标注") | |
marked_texts = gr.Textbox(label="标注结果", lines=20) | |
download_btn = gr.Button("💾 下载标注文件") | |
auto_btn.click(fn=auto_annotate, inputs=[raw_file, auto_model], outputs=marked_texts) | |
download_btn.click(fn=save_json, inputs=marked_texts, outputs=gr.File()) | |
with gr.Tab("📂 数据管理"): | |
gr.Markdown("### 数据集导入") | |
dataset_path = gr.Textbox( | |
value="D:/云边智算/暗语识别/filtered_results", | |
label="数据集路径" | |
) | |
import_btn = gr.Button("导入数据集到数据库") | |
import_output = gr.Textbox(label="导入日志") | |
import_btn.click(fn=lambda: import_dataset(dataset_path.value), outputs=import_output) | |
demo.launch(server_name="0.0.0.0", server_port=7860) |