|
|
|
from pathlib import Path |
|
import PIL |
|
|
|
|
|
import streamlit as st |
|
|
|
|
|
import settings |
|
import helper |
|
|
|
|
|
st.set_page_config( |
|
page_title="Object Detection using YOLOv8", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
st.title("Object Detection using YOLOv8") |
|
|
|
|
|
st.sidebar.header("ML Model Config") |
|
|
|
|
|
model_type = st.sidebar.radio( |
|
"Select Task", ['Detection', 'Segmentation']) |
|
|
|
confidence = float(st.sidebar.slider( |
|
"Select Model Confidence", 25, 100, 40)) / 100 |
|
|
|
|
|
if model_type == 'Detection': |
|
model_path = Path(settings.DETECTION_MODEL) |
|
elif model_type == 'Segmentation': |
|
model_path = Path(settings.SEGMENTATION_MODEL) |
|
|
|
|
|
try: |
|
model = helper.load_model(model_path) |
|
except Exception as ex: |
|
st.error(f"Unable to load model. Check the specified path: {model_path}") |
|
st.error(ex) |
|
|
|
st.sidebar.header("Image/Video Config") |
|
source_radio = st.sidebar.radio( |
|
"Select Source", settings.SOURCES_LIST) |
|
|
|
source_img = None |
|
|
|
if source_radio == settings.IMAGE: |
|
source_img = st.sidebar.file_uploader( |
|
"Choose an image...", type=("jpg", "jpeg", "png", 'bmp', 'webp')) |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
try: |
|
if source_img is None: |
|
default_image_path = str(settings.DEFAULT_IMAGE) |
|
default_image = PIL.Image.open(default_image_path) |
|
st.image(default_image_path, caption="Default Image", |
|
use_column_width=True) |
|
else: |
|
uploaded_image = PIL.Image.open(source_img) |
|
st.image(source_img, caption="Uploaded Image", |
|
use_column_width=True) |
|
except Exception as ex: |
|
st.error("Error occurred while opening the image.") |
|
st.error(ex) |
|
|
|
with col2: |
|
if source_img is None: |
|
default_detected_image_path = str(settings.DEFAULT_DETECT_IMAGE) |
|
default_detected_image = PIL.Image.open( |
|
default_detected_image_path) |
|
st.image(default_detected_image_path, caption='Detected Image', |
|
use_column_width=True) |
|
else: |
|
if st.sidebar.button('Detect Objects'): |
|
res = model.predict(uploaded_image, |
|
conf=confidence |
|
) |
|
boxes = res[0].boxes |
|
res_plotted = res[0].plot()[:, :, ::-1] |
|
st.image(res_plotted, caption='Detected Image', |
|
use_column_width=True) |
|
try: |
|
with st.expander("Detection Results"): |
|
for box in boxes: |
|
st.write(box.data) |
|
except Exception as ex: |
|
|
|
st.write("No image is uploaded yet!") |
|
|
|
elif source_radio == settings.VIDEO: |
|
helper.play_stored_video(confidence, model) |
|
|
|
elif source_radio == settings.WEBCAM: |
|
helper.play_webcam(confidence, model) |
|
|
|
elif source_radio == settings.RTSP: |
|
helper.play_rtsp_stream(confidence, model) |
|
|
|
elif source_radio == settings.YOUTUBE: |
|
helper.play_youtube_video(confidence, model) |
|
|
|
else: |
|
st.error("Please select a valid source type!") |
|
|