chateauxai commited on
Commit
250f2e4
·
verified ·
1 Parent(s): b402669

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -258
app.py CHANGED
@@ -1,8 +1,10 @@
1
  import gradio as gr
2
  import spaces
3
  from gradio_litmodel3d import LitModel3D
 
4
  import os
5
  import shutil
 
6
  os.environ['SPCONV_ALGO'] = 'native'
7
  from typing import *
8
  import torch
@@ -13,303 +15,157 @@ from PIL import Image
13
  from trellis.pipelines import TrellisImageTo3DPipeline
14
  from trellis.representations import Gaussian, MeshExtractResult
15
  from trellis.utils import render_utils, postprocessing_utils
 
16
 
17
- MAX_SEED = np.iinfo(np.int32).max
18
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
19
- os.makedirs(TMP_DIR, exist_ok=True)
20
-
21
- def start_session(req: gr.Request):
22
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
23
- os.makedirs(user_dir, exist_ok=True)
24
-
25
- def end_session(req: gr.Request):
26
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
27
- shutil.rmtree(user_dir)
28
 
29
- def preprocess_image(image: Image.Image) -> Image.Image:
30
- """
31
- Preprocess the input image.
32
- Args:
33
- image (Image.Image): The input image.
34
- Returns:
35
- Image.Image: The preprocessed image.
36
  """
37
- processed_image = pipeline.preprocess_image(image)
38
- return processed_image
39
-
40
- def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
41
  """
42
- Preprocess a list of input images.
 
 
 
 
 
 
 
43
 
44
- Args:
45
- images (List[Tuple[Image.Image, str]]): The input images.
 
46
 
47
- Returns:
48
- List[Image.Image]: The preprocessed images.
49
- """
50
- images = [image[0] for image in images]
51
- processed_images = [pipeline.preprocess_image(image) for image in images]
52
- return processed_images
53
-
54
- def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
55
- return {
56
- 'gaussian': {
57
- **gs.init_params,
58
- '_xyz': gs._xyz.cpu().numpy(),
59
- '_features_dc': gs._features_dc.cpu().numpy(),
60
- '_scaling': gs._scaling.cpu().numpy(),
61
- '_rotation': gs._rotation.cpu().numpy(),
62
- '_opacity': gs._opacity.cpu().numpy(),
63
- },
64
- 'mesh': {
65
- 'vertices': mesh.vertices.cpu().numpy(),
66
- 'faces': mesh.faces.cpu().numpy(),
67
- },
68
- }
69
 
70
- def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
71
- gs = Gaussian(
72
- aabb=state['gaussian']['aabb'],
73
- sh_degree=state['gaussian']['sh_degree'],
74
- mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
75
- scaling_bias=state['gaussian']['scaling_bias'],
76
- opacity_bias=state['gaussian']['opacity_bias'],
77
- scaling_activation=state['gaussian']['scaling_activation'],
78
- )
79
- gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
80
- gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
81
- gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
82
- gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
83
- gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
- mesh = edict(
86
- vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
87
- faces=torch.tensor(state['mesh']['faces'], device='cuda'),
 
88
  )
89
 
90
- return gs, mesh
91
-
92
- def get_seed(randomize_seed: bool, seed: int) -> int:
93
- """
94
- Get the random seed.
95
- """
96
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
97
-
98
- @spaces.GPU
99
- def image_to_3d(
100
- image: Image.Image,
101
- multiimages: List[Tuple[Image.Image, str]],
102
- is_multiimage: bool,
103
- seed: int,
104
- ss_guidance_strength: float,
105
- ss_sampling_steps: int,
106
- slat_guidance_strength: float,
107
- slat_sampling_steps: int,
108
- multiimage_algo: Literal["multidiffusion", "stochastic"],
109
- req: gr.Request,
110
- ) -> Tuple[dict, str]:
111
- """
112
- Convert an image to a 3D model.
113
- Args:
114
- image (Image.Image): The input image.
115
- multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
116
- is_multiimage (bool): Whether is in multi-image mode.
117
- seed (int): The random seed.
118
- ss_guidance_strength (float): The guidance strength for sparse structure generation.
119
- ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
120
- slat_guidance_strength (float): The guidance strength for structured latent generation.
121
- slat_sampling_steps (int): The number of sampling steps for structured latent generation.
122
- multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
123
- Returns:
124
- dict: The information of the generated 3D model.
125
- str: The path to the video of the 3D model.
126
- """
127
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
128
- if not is_multiimage:
129
- outputs = pipeline.run(
130
- image,
131
- seed=seed,
132
- formats=["gaussian", "mesh"],
133
- preprocess_image=False,
134
- sparse_structure_sampler_params={
135
- "steps": ss_sampling_steps,
136
- "cfg_strength": ss_guidance_strength,
137
- },
138
- slat_sampler_params={
139
- "steps": slat_sampling_steps,
140
- "cfg_strength": slat_guidance_strength,
141
- },
142
- )
143
- else:
144
- outputs = pipeline.run_multi_image(
145
- [image[0] for image in multiimages],
146
- seed=seed,
147
- formats=["gaussian", "mesh"],
148
- preprocess_image=False,
149
- sparse_structure_sampler_params={
150
- "steps": ss_sampling_steps,
151
- "cfg_strength": ss_guidance_strength,
152
- },
153
- slat_sampler_params={
154
- "steps": slat_sampling_steps,
155
- "cfg_strength": slat_guidance_strength,
156
- },
157
- mode=multiimage_algo,
158
- )
159
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
160
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
161
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
162
- video_path = os.path.join(user_dir, 'sample.mp4')
163
- imageio.mimsave(video_path, video, fps=15)
164
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
165
- torch.cuda.empty_cache()
166
- return state, video_path
167
 
 
168
  @spaces.GPU(duration=90)
169
  def extract_glb(
170
  state: dict,
171
  mesh_simplify: float,
172
  texture_size: int,
 
 
 
173
  req: gr.Request,
174
  ) -> Tuple[str, str]:
175
  """
176
- Extract a GLB file from the 3D model.
177
- Args:
178
- state (dict): The state of the generated 3D model.
179
- mesh_simplify (float): The mesh simplification factor.
180
- texture_size (int): The texture resolution.
181
- Returns:
182
- str: The path to the extracted GLB file.
183
  """
184
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
185
  gs, mesh = unpack_state(state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
187
  glb_path = os.path.join(user_dir, 'sample.glb')
188
  glb.export(glb_path)
189
  torch.cuda.empty_cache()
190
  return glb_path, glb_path
191
 
192
- @spaces.GPU
193
- def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
194
- """
195
- Extract a Gaussian file from the 3D model.
196
- Args:
197
- state (dict): The state of the generated 3D model.
198
- Returns:
199
- str: The path to the extracted Gaussian file.
200
- """
201
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
- gs, _ = unpack_state(state)
203
- gaussian_path = os.path.join(user_dir, 'sample.ply')
204
- gs.save_ply(gaussian_path)
205
- torch.cuda.empty_cache()
206
- return gaussian_path, gaussian_path
207
-
208
- with gr.Blocks(theme=gr.themes.Default(), delete_cache=(600, 600)) as demo:
209
- with gr.Row():
210
- with gr.Column():
211
- with gr.Tabs() as input_tabs:
212
- with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
213
- image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
214
- with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
215
- multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
216
-
217
- with gr.Accordion(label="Generation Settings", open=False):
218
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
219
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
220
- with gr.Row():
221
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
222
- ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
223
- with gr.Row():
224
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
225
- slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
226
- multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
227
-
228
- generate_btn = gr.Button("Generate", variant="primary")
229
-
230
- with gr.Accordion(label="GLB Extraction Settings", open=False):
231
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
232
- texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
233
-
234
- with gr.Row():
235
- extract_glb_btn = gr.Button("Extract GLB", interactive=False)
236
- extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
237
-
238
- with gr.Column():
239
- video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
240
- model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
241
-
242
- with gr.Row():
243
- download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
244
- download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
245
 
246
- is_multiimage = gr.State(False)
247
- output_buf = gr.State()
248
-
249
- # Handlers
250
- demo.load(start_session)
251
- demo.unload(end_session)
 
 
 
252
 
253
- single_image_input_tab.select(
254
- lambda: False,
255
- outputs=[is_multiimage]
256
- )
257
- multiimage_input_tab.select(
258
- lambda: True,
259
- outputs=[is_multiimage]
260
- )
261
 
262
- image_prompt.upload(
263
- preprocess_image,
264
- inputs=[image_prompt],
265
- outputs=[image_prompt],
 
266
  )
267
- multiimage_prompt.upload(
268
- preprocess_images,
269
- inputs=[multiimage_prompt],
270
- outputs=[multiimage_prompt],
271
- )
272
-
273
- generate_btn.click(
274
- get_seed,
275
- inputs=[randomize_seed, seed],
276
- outputs=[seed],
277
- ).then(
278
- image_to_3d,
279
- inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
280
- outputs=[output_buf, video_output],
281
- ).then(
282
- lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
283
- outputs=[extract_glb_btn, extract_gs_btn],
284
- )
285
-
286
- video_output.clear(
287
- lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
288
- outputs=[extract_glb_btn, extract_gs_btn],
289
- )
290
-
291
  extract_glb_btn.click(
292
  extract_glb,
293
- inputs=[output_buf, mesh_simplify, texture_size],
294
  outputs=[model_output, download_glb],
295
  ).then(
296
  lambda: gr.Button(interactive=True),
297
  outputs=[download_glb],
298
  )
299
 
300
- extract_gs_btn.click(
301
- extract_gaussian,
302
- inputs=[output_buf],
303
- outputs=[model_output, download_gs],
304
- ).then(
305
- lambda: gr.Button(interactive=True),
306
- outputs=[download_gs],
307
- )
308
-
309
- model_output.clear(
310
- lambda: gr.Button(interactive=False),
311
- outputs=[download_glb],
312
- )
313
 
314
  # Launch the Gradio app
315
  if __name__ == "__main__":
@@ -319,4 +175,4 @@ if __name__ == "__main__":
319
  pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
320
  except:
321
  pass
322
- demo.launch()
 
1
  import gradio as gr
2
  import spaces
3
  from gradio_litmodel3d import LitModel3D
4
+
5
  import os
6
  import shutil
7
+ import trimesh # New import
8
  os.environ['SPCONV_ALGO'] = 'native'
9
  from typing import *
10
  import torch
 
15
  from trellis.pipelines import TrellisImageTo3DPipeline
16
  from trellis.representations import Gaussian, MeshExtractResult
17
  from trellis.utils import render_utils, postprocessing_utils
18
+ from scipy.spatial import ConvexHull # New import
19
 
20
+ # [Previous imports and constants remain the same...]
 
 
 
 
 
 
 
 
 
 
21
 
22
+ def optimize_building_mesh(mesh, angle_threshold=15, planar_threshold=0.02):
 
 
 
 
 
 
23
  """
24
+ Optimize a building mesh by preserving architectural features while reducing complexity.
 
 
 
25
  """
26
+ # Convert vertices to numpy array for processing
27
+ vertices = np.array(mesh.vertices)
28
+ faces = np.array(mesh.faces)
29
+
30
+ # 1. Detect planar surfaces
31
+ normals = mesh.face_normals
32
+ planar_groups = []
33
+ processed = set()
34
 
35
+ for i in range(len(faces)):
36
+ if i in processed:
37
+ continue
38
 
39
+ # Find connected faces with similar normals
40
+ similar_faces = {i}
41
+ stack = [i]
42
+ while stack:
43
+ current = stack.pop()
44
+ neighbors = mesh.face_adjacency[mesh.face_adjacency[:,0] == current][:,1]
45
+ for n in neighbors:
46
+ if n not in processed:
47
+ angle = np.arccos(np.dot(normals[current], normals[n])) * 180 / np.pi
48
+ if angle < angle_threshold:
49
+ similar_faces.add(n)
50
+ stack.append(n)
51
+ processed.add(n)
52
+
53
+ if len(similar_faces) > 0:
54
+ planar_groups.append(list(similar_faces))
 
 
 
 
 
 
55
 
56
+ # 2. Simplify each planar group while preserving edges
57
+ new_vertices = []
58
+ new_faces = []
59
+ vertex_map = {}
60
+
61
+ for group in planar_groups:
62
+ # Get vertices for this group
63
+ group_faces = faces[group]
64
+ group_verts = vertices[np.unique(group_faces)]
65
+
66
+ # Find best fitting plane
67
+ centroid = np.mean(group_verts, axis=0)
68
+ _, _, vh = np.linalg.svd(group_verts - centroid)
69
+ normal = vh[2]
70
+
71
+ # Project vertices to plane and simplify
72
+ projected = group_verts - np.dot(group_verts - centroid, normal)[:, np.newaxis] * normal
73
+
74
+ # Create simplified convex hull for this section
75
+ hull = ConvexHull(projected[:,:2])
76
+ hull_vertices = projected[hull.vertices]
77
+
78
+ # Add to new mesh
79
+ start_idx = len(new_vertices)
80
+ new_vertices.extend(hull_vertices)
81
+
82
+ # Triangulate the hull
83
+ for i in range(1, len(hull_vertices) - 1):
84
+ new_faces.append([start_idx, start_idx + i, start_idx + i + 1])
85
 
86
+ # 3. Create new optimized mesh
87
+ optimized_mesh = trimesh.Trimesh(
88
+ vertices=np.array(new_vertices),
89
+ faces=np.array(new_faces)
90
  )
91
 
92
+ return optimized_mesh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ # Modify the existing extract_glb function
95
  @spaces.GPU(duration=90)
96
  def extract_glb(
97
  state: dict,
98
  mesh_simplify: float,
99
  texture_size: int,
100
+ is_building: bool, # New parameter
101
+ angle_threshold: float, # New parameter
102
+ planar_threshold: float, # New parameter
103
  req: gr.Request,
104
  ) -> Tuple[str, str]:
105
  """
106
+ Extract a GLB file from the 3D model with optional building optimization.
 
 
 
 
 
 
107
  """
108
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
109
  gs, mesh = unpack_state(state)
110
+
111
+ if is_building:
112
+ # Convert to trimesh for optimization
113
+ trimesh_mesh = trimesh.Trimesh(
114
+ vertices=mesh.vertices.cpu().numpy(),
115
+ faces=mesh.faces.cpu().numpy()
116
+ )
117
+
118
+ # Apply building-specific optimization
119
+ optimized_mesh = optimize_building_mesh(
120
+ trimesh_mesh,
121
+ angle_threshold=angle_threshold,
122
+ planar_threshold=planar_threshold
123
+ )
124
+
125
+ # Convert back to original format
126
+ mesh.vertices = torch.tensor(optimized_mesh.vertices, device='cuda')
127
+ mesh.faces = torch.tensor(optimized_mesh.faces, device='cuda')
128
+
129
  glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
130
  glb_path = os.path.join(user_dir, 'sample.glb')
131
  glb.export(glb_path)
132
  torch.cuda.empty_cache()
133
  return glb_path, glb_path
134
 
135
+ # Modify the main UI code section
136
+ with gr.Blocks(delete_cache=(600, 600)) as demo:
137
+ # [Previous UI code remains the same until GLB Extraction Settings...]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ with gr.Accordion(label="GLB Extraction Settings", open=False):
140
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
141
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
142
+ # Add new building optimization controls
143
+ with gr.Row():
144
+ is_building = gr.Checkbox(label="Enable Building Optimization", value=False)
145
+ with gr.Column(visible=False) as building_settings:
146
+ angle_threshold = gr.Slider(5, 45, label="Edge Angle Threshold", value=15, step=1)
147
+ planar_threshold = gr.Slider(0.01, 0.1, label="Planar Surface Threshold", value=0.02, step=0.01)
148
 
149
+ # [Rest of the UI code remains the same until the event handlers...]
 
 
 
 
 
 
 
150
 
151
+ # Add visibility toggle for building settings
152
+ is_building.change(
153
+ lambda x: gr.Column.update(visible=x),
154
+ inputs=[is_building],
155
+ outputs=[building_settings]
156
  )
157
+
158
+ # Modify the extract_glb button click handler
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  extract_glb_btn.click(
160
  extract_glb,
161
+ inputs=[output_buf, mesh_simplify, texture_size, is_building, angle_threshold, planar_threshold],
162
  outputs=[model_output, download_glb],
163
  ).then(
164
  lambda: gr.Button(interactive=True),
165
  outputs=[download_glb],
166
  )
167
 
168
+ # [Rest of the code remains the same...]
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
  # Launch the Gradio app
171
  if __name__ == "__main__":
 
175
  pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
176
  except:
177
  pass
178
+ demo.launch()