Spaces:
Sleeping
Sleeping
Ashraf
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
| 4 |
-
|
| 5 |
import os
|
| 6 |
import shutil
|
| 7 |
os.environ['SPCONV_ALGO'] = 'native'
|
|
@@ -15,22 +14,18 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
| 15 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 16 |
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
|
| 18 |
-
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 22 |
|
| 23 |
-
|
| 24 |
def start_session(req: gr.Request):
|
| 25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 26 |
os.makedirs(user_dir, exist_ok=True)
|
| 27 |
|
| 28 |
-
|
| 29 |
def end_session(req: gr.Request):
|
| 30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 31 |
shutil.rmtree(user_dir)
|
| 32 |
|
| 33 |
-
|
| 34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 35 |
"""
|
| 36 |
Preprocess the input image.
|
|
@@ -42,7 +37,6 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
| 42 |
processed_image = pipeline.preprocess_image(image)
|
| 43 |
return processed_image
|
| 44 |
|
| 45 |
-
|
| 46 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 47 |
"""
|
| 48 |
Preprocess a list of input images.
|
|
@@ -57,7 +51,6 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
| 57 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 58 |
return processed_images
|
| 59 |
|
| 60 |
-
|
| 61 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 62 |
return {
|
| 63 |
'gaussian': {
|
|
@@ -74,7 +67,6 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
| 74 |
},
|
| 75 |
}
|
| 76 |
|
| 77 |
-
|
| 78 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 79 |
gs = Gaussian(
|
| 80 |
aabb=state['gaussian']['aabb'],
|
|
@@ -97,14 +89,12 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 97 |
|
| 98 |
return gs, mesh
|
| 99 |
|
| 100 |
-
|
| 101 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 102 |
"""
|
| 103 |
Get the random seed.
|
| 104 |
"""
|
| 105 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 106 |
|
| 107 |
-
|
| 108 |
@spaces.GPU
|
| 109 |
def image_to_3d(
|
| 110 |
image: Image.Image,
|
|
@@ -175,7 +165,6 @@ def image_to_3d(
|
|
| 175 |
torch.cuda.empty_cache()
|
| 176 |
return state, video_path
|
| 177 |
|
| 178 |
-
|
| 179 |
@spaces.GPU(duration=90)
|
| 180 |
def extract_glb(
|
| 181 |
state: dict,
|
|
@@ -200,7 +189,6 @@ def extract_glb(
|
|
| 200 |
torch.cuda.empty_cache()
|
| 201 |
return glb_path, glb_path
|
| 202 |
|
| 203 |
-
|
| 204 |
@spaces.GPU
|
| 205 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 206 |
"""
|
|
@@ -217,39 +205,7 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
| 217 |
torch.cuda.empty_cache()
|
| 218 |
return gaussian_path, gaussian_path
|
| 219 |
|
| 220 |
-
|
| 221 |
-
def prepare_multi_example() -> List[Image.Image]:
|
| 222 |
-
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
| 223 |
-
images = []
|
| 224 |
-
for case in multi_case:
|
| 225 |
-
_images = []
|
| 226 |
-
for i in range(1, 4):
|
| 227 |
-
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
| 228 |
-
W, H = img.size
|
| 229 |
-
img = img.resize((int(W / H * 512), 512))
|
| 230 |
-
_images.append(np.array(img))
|
| 231 |
-
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
| 232 |
-
return images
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 236 |
-
"""
|
| 237 |
-
Split an image into multiple views.
|
| 238 |
-
"""
|
| 239 |
-
image = np.array(image)
|
| 240 |
-
alpha = image[..., 3]
|
| 241 |
-
alpha = np.any(alpha>0, axis=0)
|
| 242 |
-
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 243 |
-
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 244 |
-
images = []
|
| 245 |
-
for s, e in zip(start_pos, end_pos):
|
| 246 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
| 247 |
-
return [preprocess_image(image) for image in images]
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 251 |
-
gr.Markdown("")
|
| 252 |
-
|
| 253 |
with gr.Row():
|
| 254 |
with gr.Column():
|
| 255 |
with gr.Tabs() as input_tabs:
|
|
@@ -257,26 +213,19 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 257 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 258 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 259 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 260 |
-
gr.Markdown("""
|
| 261 |
-
Input different views of the object in separate images.
|
| 262 |
-
|
| 263 |
-
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 264 |
-
""")
|
| 265 |
|
| 266 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 267 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 268 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 269 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 270 |
with gr.Row():
|
| 271 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
| 272 |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 273 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
| 274 |
with gr.Row():
|
| 275 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 276 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 277 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 278 |
|
| 279 |
-
generate_btn = gr.Button("Generate")
|
| 280 |
|
| 281 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 282 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
@@ -285,9 +234,6 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 285 |
with gr.Row():
|
| 286 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 287 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 288 |
-
gr.Markdown("""
|
| 289 |
-
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 290 |
-
""")
|
| 291 |
|
| 292 |
with gr.Column():
|
| 293 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
|
@@ -300,40 +246,17 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 300 |
is_multiimage = gr.State(False)
|
| 301 |
output_buf = gr.State()
|
| 302 |
|
| 303 |
-
# Example images at the bottom of the page
|
| 304 |
-
with gr.Row() as single_image_example:
|
| 305 |
-
examples = gr.Examples(
|
| 306 |
-
examples=[
|
| 307 |
-
f'assets/example_image/{image}'
|
| 308 |
-
for image in os.listdir("")
|
| 309 |
-
],
|
| 310 |
-
inputs=[image_prompt],
|
| 311 |
-
fn=preprocess_image,
|
| 312 |
-
outputs=[image_prompt],
|
| 313 |
-
run_on_click=True,
|
| 314 |
-
examples_per_page=64,
|
| 315 |
-
)
|
| 316 |
-
with gr.Row(visible=False) as multiimage_example:
|
| 317 |
-
examples_multi = gr.Examples(
|
| 318 |
-
examples=prepare_multi_example(),
|
| 319 |
-
inputs=[image_prompt],
|
| 320 |
-
fn=split_image,
|
| 321 |
-
outputs=[multiimage_prompt],
|
| 322 |
-
run_on_click=True,
|
| 323 |
-
examples_per_page=8,
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
# Handlers
|
| 327 |
demo.load(start_session)
|
| 328 |
demo.unload(end_session)
|
| 329 |
|
| 330 |
single_image_input_tab.select(
|
| 331 |
-
lambda:
|
| 332 |
-
outputs=[is_multiimage
|
| 333 |
)
|
| 334 |
multiimage_input_tab.select(
|
| 335 |
-
lambda:
|
| 336 |
-
outputs=[is_multiimage
|
| 337 |
)
|
| 338 |
|
| 339 |
image_prompt.upload(
|
|
@@ -387,7 +310,6 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 387 |
lambda: gr.Button(interactive=False),
|
| 388 |
outputs=[download_glb],
|
| 389 |
)
|
| 390 |
-
|
| 391 |
|
| 392 |
# Launch the Gradio app
|
| 393 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
|
|
|
| 4 |
import os
|
| 5 |
import shutil
|
| 6 |
os.environ['SPCONV_ALGO'] = 'native'
|
|
|
|
| 14 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 15 |
from trellis.utils import render_utils, postprocessing_utils
|
| 16 |
|
|
|
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 19 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 20 |
|
|
|
|
| 21 |
def start_session(req: gr.Request):
|
| 22 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 23 |
os.makedirs(user_dir, exist_ok=True)
|
| 24 |
|
|
|
|
| 25 |
def end_session(req: gr.Request):
|
| 26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 27 |
shutil.rmtree(user_dir)
|
| 28 |
|
|
|
|
| 29 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 30 |
"""
|
| 31 |
Preprocess the input image.
|
|
|
|
| 37 |
processed_image = pipeline.preprocess_image(image)
|
| 38 |
return processed_image
|
| 39 |
|
|
|
|
| 40 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 41 |
"""
|
| 42 |
Preprocess a list of input images.
|
|
|
|
| 51 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 52 |
return processed_images
|
| 53 |
|
|
|
|
| 54 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 55 |
return {
|
| 56 |
'gaussian': {
|
|
|
|
| 67 |
},
|
| 68 |
}
|
| 69 |
|
|
|
|
| 70 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 71 |
gs = Gaussian(
|
| 72 |
aabb=state['gaussian']['aabb'],
|
|
|
|
| 89 |
|
| 90 |
return gs, mesh
|
| 91 |
|
|
|
|
| 92 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 93 |
"""
|
| 94 |
Get the random seed.
|
| 95 |
"""
|
| 96 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 97 |
|
|
|
|
| 98 |
@spaces.GPU
|
| 99 |
def image_to_3d(
|
| 100 |
image: Image.Image,
|
|
|
|
| 165 |
torch.cuda.empty_cache()
|
| 166 |
return state, video_path
|
| 167 |
|
|
|
|
| 168 |
@spaces.GPU(duration=90)
|
| 169 |
def extract_glb(
|
| 170 |
state: dict,
|
|
|
|
| 189 |
torch.cuda.empty_cache()
|
| 190 |
return glb_path, glb_path
|
| 191 |
|
|
|
|
| 192 |
@spaces.GPU
|
| 193 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 194 |
"""
|
|
|
|
| 205 |
torch.cuda.empty_cache()
|
| 206 |
return gaussian_path, gaussian_path
|
| 207 |
|
| 208 |
+
with gr.Blocks(theme=gr.themes.Default(), delete_cache=(600, 600)) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
with gr.Row():
|
| 210 |
with gr.Column():
|
| 211 |
with gr.Tabs() as input_tabs:
|
|
|
|
| 213 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 214 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 215 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 218 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 219 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
| 220 |
with gr.Row():
|
| 221 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
| 222 |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
|
|
|
| 223 |
with gr.Row():
|
| 224 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 225 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 226 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 227 |
|
| 228 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 229 |
|
| 230 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 231 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
|
|
| 234 |
with gr.Row():
|
| 235 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 236 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
with gr.Column():
|
| 239 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
|
|
|
| 246 |
is_multiimage = gr.State(False)
|
| 247 |
output_buf = gr.State()
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
# Handlers
|
| 250 |
demo.load(start_session)
|
| 251 |
demo.unload(end_session)
|
| 252 |
|
| 253 |
single_image_input_tab.select(
|
| 254 |
+
lambda: False,
|
| 255 |
+
outputs=[is_multiimage]
|
| 256 |
)
|
| 257 |
multiimage_input_tab.select(
|
| 258 |
+
lambda: True,
|
| 259 |
+
outputs=[is_multiimage]
|
| 260 |
)
|
| 261 |
|
| 262 |
image_prompt.upload(
|
|
|
|
| 310 |
lambda: gr.Button(interactive=False),
|
| 311 |
outputs=[download_glb],
|
| 312 |
)
|
|
|
|
| 313 |
|
| 314 |
# Launch the Gradio app
|
| 315 |
if __name__ == "__main__":
|