DMD-emulator / app.py
charlesnchr's picture
Renaming
f6173bc
raw
history blame
10.9 kB
""" ----------------------------------------
* Creation Time : Tue Jun 13 14:18:20 2023
* Author : Charles N. Christensen
* Github : github.com/charlesnchr
----------------------------------------"""
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
from skimage import io
import tifffile as tiff
import os
# Function to draw a rectangle given four points
def draw_rectangle(points, ax):
# Compute the centroid of the points
centroid = np.mean(points, axis=0)
# Compute the width and height
width = np.linalg.norm(points[1] - points[0])
height = np.linalg.norm(points[2] - points[1])
# Compute the angle
angle = np.arctan2(points[1, 1] - points[0, 1], points[1, 0] - points[0, 0])
# Create the rectangle
rect = patches.Rectangle(
centroid,
width,
height,
angle=np.degrees(angle),
linewidth=1,
edgecolor="gray",
facecolor="none",
transform=ax.transData,
)
# Add the rectangle
ax.add_patch(rect)
ax.set_aspect("equal")
def draw_rectangle_from_coords(ax, ridx, cidx):
l = np.sqrt(2) / 2 # unit length
o = 8 # origin (x,y)
shift = 1 if ridx % 2 == 0 else 0
x1 = o - 2 * l * cidx + shift * l
y1 = o - l * ridx
x2 = o - l - 2 * l * cidx + shift * l
y2 = o + l - l * ridx
x3 = o - 2 * l * cidx + shift * l
y3 = o + 2 * l - l * ridx
x4 = o + l - 2 * l * cidx + shift * l
y4 = o + l - l * ridx
# apply shift based on row and column
# Parse points
points = np.array([x1, y1, x2, y2, x3, y3, x4, y4]).reshape(-1, 2)
draw_rectangle(points, ax)
# annotate ridx and cidx in the center of the rectangle
ax.annotate(
f"{ridx},{cidx}",
xy=(x2, (y1 + y3) / 2),
horizontalalignment="center",
verticalalignment="center",
color="orange",
)
# return min max x and y
return (
min(x1, x2, x3, x4),
max(x1, x2, x3, x4),
min(y1, y2, y3, y4),
max(y1, y2, y3, y4),
)
def plot_patch(patch):
fig, ax = plt.subplots()
bounds_list = []
# iterate through patch and render if pixel is 1
for row in range(patch.shape[0]):
for col in range(patch.shape[1]):
if patch[row, col] > 100:
bounds = draw_rectangle_from_coords(ax, row, col)
print(bounds)
bounds_list.append(bounds)
# Get the min and max x and y values
xmin = min([b[0] for b in bounds_list])
xmax = max([b[1] for b in bounds_list])
ymin = min([b[2] for b in bounds_list])
ymax = max([b[3] for b in bounds_list])
# Set the limits of the plot
plt.xlim(xmin - 2, xmax + 1)
plt.ylim(ymin - 1, ymax + 1)
return fig, xmin, xmax, ymin, ymax
def DMDPixelTransform(input_img, dmdMapping, xoffset=0, yoffset=0):
# Initialize an array of zeros with same size as the input image
transformed_img = np.zeros_like(input_img)
# Get the dimensions of the input image
rows, cols = input_img.shape
# Iterate over the pixels of the input image
for i in range(rows):
for j in range(cols):
# Calculate the new coordinates for the pixel
ip = i + yoffset
jp = j + xoffset
# Apply the dmdMapping transformation if set
if dmdMapping > 0:
transformed_i = jp + ip - 2
transformed_j = (jp - ip + 4) // 2
else:
transformed_i = ip
transformed_j = jp
# If the new coordinates are within the bounds of the image, copy the pixel value
if 0 <= transformed_i < rows and 0 <= transformed_j < cols:
transformed_img[transformed_i, transformed_j] = input_img[i, j]
# Return the transformed image
return transformed_img
# Streamlit app
st.title("ONI DMD emulator")
# add author info and context
st.markdown("Charles N. Christensen, ONI — 2023/06/14")
tabs = st.tabs(
[
"Basic rendering",
"Pregenerated pattern with padding",
"Manual pattern definition",
]
)
with tabs[0]:
st.header("Render DMD layout")
# Create a new figure
fig, ax = plt.subplots()
# streamlit input for number of columns and rows
cols = st.number_input("Number of columns", min_value=1, max_value=20, value=5)
rows = st.number_input("Number of rows", min_value=1, max_value=20, value=5)
bounds_list = []
for col in range(cols):
for row in range(rows):
bounds = draw_rectangle_from_coords(ax, row, col)
bounds_list.append(bounds)
# Get the min and max x and y values
xmin = min([b[0] for b in bounds_list])
xmax = max([b[1] for b in bounds_list])
ymin = min([b[2] for b in bounds_list])
ymax = max([b[3] for b in bounds_list])
# Set the limits of the plot
plt.xlim(xmin - 2, xmax + 1)
plt.ylim(ymin - 1, ymax + 1)
fig.set_size_inches(cols + 0.5, rows + 0.5)
st.pyplot(fig)
with tabs[1]:
st.subheader("Upload pregenerated pattern or use default")
# upload pattern image
pattern = st.file_uploader("Upload pattern image", type=["tif", "tiff"])
# fallback
if pattern is None:
option = st.selectbox(
"Select pattern",
(
"patterns_spotSize_2_Nspots_5_dmdMapping_1.tif",
"patterns_spotSize_5_Nspots_20_dmdMapping_1.tif",
"patterns_spotSize_1_Nspots_5_dmdMapping_1.tif",
"patterns_pixelsize_ratio_1_k2_200_func_square_wave_one_third_dmdMapping_1.tif",
"patterns_pixelsize_ratio_1_k2_200_func_square_wave_one_third_dmdMapping_0.tif",
"patterns_pixelsize_ratio_1_k2_80_func_square_wave_one_third_dmdMapping_1.tif",
"patterns_pixelsize_ratio_1_k2_80_func_square_wave_one_third_dmdMapping_0.tif",
"patterns_pixelsize_ratio_1_k2_20_func_square_wave_one_third_dmdMapping_1.tif",
"patterns_pixelsize_ratio_1.8_k2_200_func_square_wave_one_third.tif",
"patterns_pixelsize_ratio_1.8_k2_150_func_square_wave_one_third.tif",
"patterns_pixelsize_ratio_1.8_k2_110_func_square_wave_one_third.tif",
"patterns_pixelsize_ratio_1.6_k2_80.tif",
),
)
cur_dir = os.path.dirname(os.path.abspath(__file__))
def_pattern = f"{cur_dir}/patterns/{option}"
img = io.imread(def_pattern)
st.markdown("""**No pattern uploaded**: Loading selected default image.""")
st.markdown(
"Note that `pixelsize_ratio > 1` and `_dmdMapping_0` indicate an assumption of ortholinear grid (no DMD layout correction). The `_dmdMapping_1` patterns are corrected for DMD."
)
else:
print("loading image", pattern)
img = tiff.imread(pattern)
st.subheader("Parameters")
cols = st.columns(2)
# streamlit number input for padding
with cols[0]:
x_padding = st.number_input(
"Vertical padding", min_value=0, max_value=10, value=0
)
with cols[1]:
y_padding = st.number_input(
"Horizontal padding", min_value=0, max_value=10, value=0
)
# streamlit number input for global offset
cols = st.columns(2)
with cols[0]:
x_offset_img = st.number_input(
"Vertical image offset (change to test near edges of DMD)",
min_value=0,
max_value=30,
value=10,
)
with cols[1]:
y_offset_img = st.number_input(
"Horizontal image offset (change to test near edges of DMD)",
min_value=0,
max_value=30,
value=20,
)
cols = st.columns(2)
with cols[0]:
rows_img = st.number_input(
"Number of rows", min_value=5, max_value=100, value=20
)
with cols[1]:
cols_img = st.number_input(
"Number of columns", min_value=5, max_value=100, value=20
)
cols = st.columns(2)
with cols[0]:
frame_idx = st.number_input(
"Plot frame index start", min_value=0, max_value=400, value=0
)
with cols[1]:
frame_count = st.number_input(
"Plot frame index range", min_value=1, max_value=5, value=2
)
global_bounds = None
# plot patches in two frames
for i in range(frame_idx, frame_idx + frame_count):
patch = img[
i,
y_offset_img : y_offset_img + rows_img,
x_offset_img : x_offset_img + cols_img,
]
# add 1pixel padding in top to patch
patch = np.pad(
patch, ((x_padding, 0), (y_padding, 0)), "constant", constant_values=0
)
fig, xmin, xmax, ymin, ymax = plot_patch(patch)
if global_bounds is None:
global_bounds = xmin, xmax, ymin, ymax
xmin, xmax, ymin, ymax = global_bounds
plt.xlim(xmin - 2, xmax + 1)
plt.ylim(ymin - 2, ymax + 1)
fig.set_size_inches(xmax - xmin + 4, ymax - ymin + 4)
st.subheader(f"Frame {i}")
st.pyplot(fig)
with tabs[2]:
# 5x5 array of st checkboxes
st.subheader("Select pixels to turn on in tilted coordinate system")
grid = np.zeros((5, 5))
for i in range(5):
cols = st.columns(5)
for j in range(5):
with cols[j]:
# set value based on i,j = 0,0 1,0 0,1 1,1
value = False
if i == 1 or i == 2:
if j == 1 or j == 2:
value = True
grid[i, j] = st.checkbox(f"{i},{j}", value=value, key=f"{i},{j}")
grid = 255 * grid
# streamlit number input for global offset
x_offset = st.number_input(
"Vertical global offset (change to test near edges of DMD)",
min_value=0,
max_value=30,
value=10,
)
y_offset = st.number_input(
"Horizontal global offset (change to test near edges of DMD)",
min_value=0,
max_value=30,
value=20,
)
global_bounds = None
# plot with offsets of 1px in x and y
for xoffset in range(0, 2):
for yoffset in range(0, 2):
patch = np.zeros((40, 40))
patch[x_offset : x_offset + 5, y_offset : y_offset + 5] = grid
patch = DMDPixelTransform(patch, 1, xoffset, yoffset)
fig, xmin, xmax, ymin, ymax = plot_patch(patch)
if global_bounds is None:
global_bounds = xmin, xmax, ymin, ymax
xmin, xmax, ymin, ymax = global_bounds
plt.xlim(xmin - 2, xmax + 1)
plt.ylim(ymin - 2, ymax + 1)
fig.set_size_inches(xmax - xmin + 4, ymax - ymin + 4)
st.subheader(f"Frame with offset x={xoffset} and y={yoffset}")
st.pyplot(fig)