paper_qa / ui.py
chansung's picture
Update ui.py
cd898bc verified
raw
history blame
11.2 kB
import re
import copy
import json
import datasets
import gradio as gr
import pandas as pd
from pingpong import PingPong
from pingpong.context import CtxLastWindowStrategy
from gen.openllm import gen_text as open_llm_gen_text
from gen.gemini_chat import gen_text as gemini_gen_text
from gen.gemini_chat import init as gemini_init
from constants.context import DEFAULT_GLOBAL_CTX
from init import (
requested_arxiv_ids_df,
date_dict,
arxivid2data,
request_arxiv_repo_id,
hf_token,
gemini_api_key
)
from utils import push_to_hf_hub
gemini_init(gemini_api_key)
def get_paper_by_year(year):
months = sorted(date_dict[year].keys())
last_month = months[-1]
days = sorted(date_dict[year][last_month].keys())
last_day = days[-1]
papers = list(set(
[paper["title"] for paper in date_dict[year][last_month][last_day]]
))
return (
gr.Dropdown(choices=months, value=last_month),
gr.Dropdown(choices=days, value=last_day),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_month(year, month):
days = sorted(date_dict[year][month].keys())
last_day = days[-1]
papers = list(set(
[paper["title"] for paper in date_dict[year][month][last_day]]
))
return (
gr.Dropdown(choices=days, value=last_day),
gr.Dropdown(choices=papers, value=papers[0])
)
def get_paper_by_day(year, month, day):
papers = list(set(
[paper["title"] for paper in date_dict[year][month][day]]
))
return gr.Dropdown(choices=papers, value=papers[0])
def set_papers(year, month, day, title):
papers = []
for paper in date_dict[year][month][day]:
papers.append(paper["title"])
if paper["title"] == title:
arxiv_id = paper["arxiv_id"]
papers = list(set(papers))
return (
arxiv_id,
gr.Dropdown(choices=papers, value=title),
gr.Textbox("")
)
def set_paper(year, month, day, paper_title):
selected_paper = None
for paper in date_dict[year][month][day]:
if paper["title"] == paper_title:
selected_paper = paper
break
print(type(selected_paper['arxiv_id']))
return (
selected_paper['arxiv_id'],
gr.Markdown(f"# {selected_paper['title']}"),
gr.Markdown(
"[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg?style=for-the-badge)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id'])
),
gr.Markdown(
"[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id']
),
gr.Markdown(selected_paper["summary"]),
gr.Markdown(f"### πŸ™‹ {selected_paper['0_question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_depth_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_breath_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### πŸ™‹ {selected_paper['1_question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_depth_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_breath_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),
gr.Markdown(f"### πŸ™‹ {selected_paper['2_question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_depth_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_breath_q:follow up question']}"),
gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"),
gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
)
def set_date(title):
for _, (year, months) in enumerate(date_dict.items()):
for _, (month, days) in enumerate(months.items()):
for _, (day, papers) in enumerate(days.items()):
for paper in papers:
if paper['title'] == title:
return (
gr.Dropdown(value=year),
gr.Dropdown(choices=sorted(months), value=month),
gr.Dropdown(choices=sorted(days), value=day),
)
def change_exp_type(exp_type):
if exp_type == "ELI5":
return (
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
)
else:
return (
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
)
def _filter_duplicate_arxiv_ids(arxiv_ids_to_be_added):
ds1 = datasets.load_dataset("chansung/requested-arxiv-ids-3")
ds2 = datasets.load_dataset("chansung/auto-paper-qa2")
unique_arxiv_ids = set()
for d in ds1['train']:
arxiv_ids = d['Requested arXiv IDs']
unique_arxiv_ids = set(list(unique_arxiv_ids) + arxiv_ids)
for d in ds2['train']:
arxiv_id = d['arxiv_id']
unique_arxiv_ids.add(arxiv_id)
return list(set(arxiv_ids_to_be_added) - unique_arxiv_ids)
def _is_arxiv_id_valid(arxiv_id):
pattern = r"^\d{4}\.\d{5}$"
return bool(re.match(pattern, arxiv_id))
def _get_valid_arxiv_ids(arxiv_ids_str):
valid_arxiv_ids = []
invalid_arxiv_ids = []
for arxiv_id in arxiv_ids_str.split(","):
arxiv_id = arxiv_id.strip()
if _is_arxiv_id_valid(arxiv_id):
valid_arxiv_ids.append(arxiv_id)
else:
invalid_arxiv_ids.append(arxiv_id)
return valid_arxiv_ids, invalid_arxiv_ids
def add_arxiv_ids_to_queue(queue, arxiv_ids_str):
valid_arxiv_ids, invalid_arxiv_ids = _get_valid_arxiv_ids(arxiv_ids_str)
if len(invalid_arxiv_ids) > 0:
gr.Warning(f"found invalid arXiv ids as in {invalid_arxiv_ids}")
if len(valid_arxiv_ids) > 0:
valid_arxiv_ids = _filter_duplicate_arxiv_ids(valid_arxiv_ids)
if len(valid_arxiv_ids) > 0:
valid_arxiv_ids = [[arxiv_id] for arxiv_id in valid_arxiv_ids]
gr.Warning(f"Processing on [{valid_arxiv_ids}]. Other requested arXiv IDs not found on this list should be already processed or being processed...")
valid_arxiv_ids = pd.DataFrame({'Requested arXiv IDs': valid_arxiv_ids})
queue = pd.concat([queue, valid_arxiv_ids])
queue.reset_index(drop=True)
ds = datasets.Dataset.from_pandas(valid_arxiv_ids)
push_to_hf_hub(ds, request_arxiv_repo_id, hf_token)
else:
gr.Warning(f"All requested arXiv IDs are already processed or being processed...")
else:
gr.Warning(f"No valid arXiv IDs found...")
return (
queue, gr.Textbox("")
)
# Chat
def before_chat_begin():
return (
gr.Button(interactive=False),
gr.Button(interactive=False),
gr.Button(interactive=False)
)
def _build_prompts(ppmanager, global_context, win_size=3):
dummy_ppm = copy.deepcopy(ppmanager)
dummy_ppm.ctx = global_context
lws = CtxLastWindowStrategy(win_size)
return lws(dummy_ppm)
async def chat_stream(idx, local_data, user_prompt, chat_state, ctx_num_lconv=3):
paper = arxivid2data[idx]['paper']
ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
ppm.add_pingpong(
PingPong(
user_prompt,
""
)
)
prompt = _build_prompts(ppm, DEFAULT_GLOBAL_CTX % paper["full_text"].replace("\n", " ")[:30000], ctx_num_lconv)
# async for result in open_llm_gen_text(
# prompt,
# hf_model='meta-llama/Llama-2-70b-chat-hf', hf_token=hf_token,
# parameters={
# 'max_new_tokens': 4906,
# 'do_sample': True,
# 'return_full_text': False,
# 'temperature': 0.7,
# 'top_k': 10,
# 'repetition_penalty': 1.2
# }
# ):
try:
async for result in gemini_gen_text(prompt):
ppm.append_pong(result)
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
print(e)
ppm.replace_pong("Gemini refused to answer. This happens becase there were some safety issues in the answer.")
yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
def chat_reset(local_data, chat_state):
ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
ppm.pingpongs = []
return "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)