|
from functools import partial |
|
|
|
import pandas as pd |
|
import streamlit as st |
|
import torch |
|
from datasets import Dataset, DatasetDict, load_dataset |
|
from torch.nn.functional import cross_entropy |
|
from transformers import DataCollatorForTokenClassification |
|
|
|
from src.utils import device, tokenizer_hash_funcs |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def get_data( |
|
ds_name: str, config_name: str, split_name: str, split_sample_size: int, randomize_sample: bool |
|
) -> Dataset: |
|
"""Loads a Dataset from the HuggingFace hub (if not already loaded). |
|
|
|
Uses `datasets.load_dataset` to load the dataset (see its documentation for additional details). |
|
|
|
Args: |
|
ds_name (str): Path or name of the dataset. |
|
config_name (str): Name of the dataset configuration. |
|
split_name (str): Which split of the data to load. |
|
split_sample_size (int): The number of examples to load from the split. |
|
|
|
Returns: |
|
Dataset: A Dataset object. |
|
""" |
|
ds: DatasetDict = load_dataset(ds_name, name=config_name, use_auth_token=True).shuffle( |
|
seed=0 if randomize_sample else None |
|
) |
|
split = ds[split_name].select(range(split_sample_size)) |
|
return split |
|
|
|
|
|
@st.cache( |
|
allow_output_mutation=True, |
|
hash_funcs=tokenizer_hash_funcs, |
|
) |
|
def get_collator(tokenizer) -> DataCollatorForTokenClassification: |
|
"""Returns a DataCollator that will dynamically pad the inputs received, as well as the labels. |
|
|
|
Args: |
|
tokenizer ([PreTrainedTokenizer] or [PreTrainedTokenizerFast]): The tokenizer used for encoding the data. |
|
|
|
Returns: |
|
DataCollatorForTokenClassification: The DataCollatorForTokenClassification object. |
|
""" |
|
return DataCollatorForTokenClassification(tokenizer) |
|
|
|
|
|
def create_word_ids_from_input_ids(tokenizer, input_ids: list[int]) -> list[int]: |
|
"""Takes a list of input_ids and return corresponding word_ids |
|
|
|
Args: |
|
tokenizer: The tokenizer that was used to obtain the input ids. |
|
input_ids (list[int]): List of token ids. |
|
|
|
Returns: |
|
list[int]: Word ids corresponding to the input ids. |
|
""" |
|
word_ids = [] |
|
wid = -1 |
|
tokens = [tokenizer.convert_ids_to_tokens(i) for i in input_ids] |
|
|
|
for i, tok in enumerate(tokens): |
|
if tok in tokenizer.all_special_tokens: |
|
word_ids.append(-1) |
|
continue |
|
|
|
if not tokens[i - 1].endswith("@@") and tokens[i - 1] != "<unk>": |
|
wid += 1 |
|
|
|
word_ids.append(wid) |
|
|
|
assert len(word_ids) == len(input_ids) |
|
return word_ids |
|
|
|
|
|
def tokenize(batch, tokenizer) -> dict: |
|
"""Tokenizes a batch of examples. |
|
|
|
Args: |
|
batch: The examples to tokenize |
|
tokenizer: The tokenizer to use |
|
|
|
Returns: |
|
dict: The tokenized batch |
|
""" |
|
tokenized_inputs = tokenizer(batch["tokens"], truncation=True, is_split_into_words=True) |
|
labels = [] |
|
wids = [] |
|
|
|
for idx, label in enumerate(batch["ner_tags"]): |
|
try: |
|
word_ids = tokenized_inputs.word_ids(batch_index=idx) |
|
except ValueError: |
|
word_ids = create_word_ids_from_input_ids( |
|
tokenizer, tokenized_inputs["input_ids"][idx] |
|
) |
|
previous_word_idx = None |
|
label_ids = [] |
|
for word_idx in word_ids: |
|
if word_idx == -1 or word_idx is None or word_idx == previous_word_idx: |
|
label_ids.append(-100) |
|
else: |
|
label_ids.append(label[word_idx]) |
|
previous_word_idx = word_idx |
|
wids.append(word_ids) |
|
labels.append(label_ids) |
|
tokenized_inputs["word_ids"] = wids |
|
tokenized_inputs["labels"] = labels |
|
return tokenized_inputs |
|
|
|
|
|
def stringify_ner_tags(batch: dict, tags) -> dict: |
|
"""Stringifies a dataset batch's NER tags.""" |
|
return {"ner_tags_str": [tags.int2str(idx) for idx in batch["ner_tags"]]} |
|
|
|
|
|
def encode_dataset(split: Dataset, tokenizer): |
|
"""Encodes a dataset split. |
|
|
|
Args: |
|
split (Dataset): A Dataset object. |
|
tokenizer: A PreTrainedTokenizer object. |
|
|
|
Returns: |
|
Dataset: A Dataset object with the encoded inputs. |
|
""" |
|
|
|
tags = split.features["ner_tags"].feature |
|
split = split.map(partial(stringify_ner_tags, tags=tags), batched=True) |
|
remove_columns = split.column_names |
|
ids = split["id"] |
|
split = split.map( |
|
partial(tokenize, tokenizer=tokenizer), |
|
batched=True, |
|
remove_columns=remove_columns, |
|
) |
|
word_ids = [[id if id is not None else -1 for id in wids] for wids in split["word_ids"]] |
|
return split.remove_columns(["word_ids"]), word_ids, ids |
|
|
|
|
|
def forward_pass_with_label(batch, model, collator, num_classes: int) -> dict: |
|
"""Runs the forward pass for a batch of examples. |
|
|
|
Args: |
|
batch: The batch to process |
|
model: The model to process the batch with |
|
collator: A data collator |
|
num_classes (int): Number of classes |
|
|
|
Returns: |
|
dict: a dictionary containing `losses`, `preds` and `hidden_states` |
|
""" |
|
|
|
|
|
features = [dict(zip(batch, t)) for t in zip(*batch.values())] |
|
|
|
|
|
batch = collator(features) |
|
input_ids = batch["input_ids"].to(device) |
|
attention_mask = batch["attention_mask"].to(device) |
|
labels = batch["labels"].to(device) |
|
|
|
with torch.no_grad(): |
|
|
|
output = model(input_ids, attention_mask, output_hidden_states=True) |
|
|
|
|
|
|
|
preds = torch.argmax(output.logits, axis=-1).cpu().numpy() |
|
|
|
|
|
loss = cross_entropy( |
|
output.logits.view(-1, num_classes), labels.view(-1), reduction="none" |
|
) |
|
|
|
|
|
loss = loss.view(len(input_ids), -1).cpu().numpy() |
|
hidden_states = output.hidden_states[-1].cpu().numpy() |
|
|
|
|
|
|
|
return {"losses": loss, "preds": preds, "hidden_states": hidden_states} |
|
|
|
|
|
def predict(split_encoded: Dataset, model, tokenizer, collator, tags) -> pd.DataFrame: |
|
"""Generates predictions for a given dataset split and returns the results as a dataframe. |
|
|
|
Args: |
|
split_encoded (Dataset): The dataset to process |
|
model: The model to process the dataset with |
|
tokenizer: The tokenizer to process the dataset with |
|
collator: The data collator to use |
|
tags: The tags used in the dataset |
|
|
|
Returns: |
|
pd.DataFrame: A dataframe containing token-level predictions. |
|
""" |
|
|
|
split_encoded = split_encoded.map( |
|
partial( |
|
forward_pass_with_label, |
|
model=model, |
|
collator=collator, |
|
num_classes=tags.num_classes, |
|
), |
|
batched=True, |
|
batch_size=8, |
|
) |
|
df: pd.DataFrame = split_encoded.to_pandas() |
|
|
|
df["tokens"] = df["input_ids"].apply( |
|
lambda x: tokenizer.convert_ids_to_tokens(x) |
|
) |
|
df["labels"] = df["labels"].apply( |
|
lambda x: ["IGN" if i == -100 else tags.int2str(int(i)) for i in x] |
|
) |
|
df["preds"] = df["preds"].apply(lambda x: [model.config.id2label[i] for i in x]) |
|
df["preds"] = df.apply(lambda x: x["preds"][: len(x["input_ids"])], axis=1) |
|
df["losses"] = df.apply(lambda x: x["losses"][: len(x["input_ids"])], axis=1) |
|
df["hidden_states"] = df.apply(lambda x: x["hidden_states"][: len(x["input_ids"])], axis=1) |
|
df["total_loss"] = df["losses"].apply(sum) |
|
|
|
return df |
|
|