Fetch_App / offer_pipeline.py
Calvin
final touches
f94a42e
raw
history blame
6.45 kB
import streamlit as st
from transformers import pipeline
import pickle
import os
import pandas as pd
import ast
import string
import re
from sentence_transformers import SentenceTransformer, util
st.set_page_config(
page_title="Offer Recommender",
layout="wide"
)
# Download and cache models
pipe = pipeline(task="zero-shot-classification", model="valhalla/distilbart-mnli-12-3")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Directory of csv files
dire = "DS_NLP_search_data"
# Use Streamlit caching to load data once
@st.cache_data
def get_processed_offers():
'''
Load processed offers from exploration notebook and cache
Returns:
processed_offers (pd.DataFrame) : zero-shot categorized offers
'''
processed_offers = pd.read_csv(os.path.join(dire, "processed_offers.csv"))
processed_offers["CATEGORY"] = processed_offers["CATEGORY"].map(ast.literal_eval)
return processed_offers
@st.cache_data
def get_categories_data():
'''
Load raw category data and cache
Returns:
cats (pd.DataFrame) : raw category data
'''
cats = pd.read_csv(os.path.join(dire, "categories.csv"))
return cats
@st.cache_data
def get_offers_data():
'''
Load raw offfers data and cache
Returns:
cats (pd.DataFrame) : raw offers data
'''
offers = pd.read_csv(os.path.join(dire, "offer_retailer.csv"))
return offers
@st.cache_data
def get_categories(cats_):
'''
Extract, load categories and cache
Parameters:
cats_ (pd.DataFrame) : raw categories data
Returns:
categories (List) : child categories
'''
categories = list(cats_["IS_CHILD_CATEGORY_TO"].unique())
for x in ["Mature"]:
if x in categories:
categories.remove(x)
return categories
def check_in_offer(search_str, offer_rets):
'''
Determine if the input text is directly in the offer with basic string matching
Parameters:
search_str (string) : user text input
offer_rets (pd.DataFrame) : raw offer data
Returns:
df (pd.DataFrame) : offers with text input
'''
offers = []
for i in range(len(offer_rets)):
offer_str = offer_rets.iloc[i]["OFFER"]
parsed_str = offer_str.lower().translate(str.maketrans('', '', string.punctuation))
parsed_str = re.sub('[^a-zA-Z0-9 \n\.]', '', parsed_str)
if search_str.lower() in parsed_str.split(" "):
offers.append(offer_str)
df = pd.DataFrame({"OFFER":offers})
return df
def is_retailer(search_str, threshold=0.5):
'''
Determine if the text input is highly likely to be a retailer
Parameters:
search_str (string) : user text input
threshold (int) : probability threshold
Returns:
is_ret (boolean) : true if retailer, false otherwise
'''
processed_search_str = search_str.lower().capitalize()
labels = pipe(processed_search_str,
candidate_labels=["brand", "retailer", "item"],
)
is_ret = labels["labels"][0] == "retailer" and labels["scores"][0] > threshold
return is_ret
def perform_cat_inference(search_str, categories, cats, processed_offers):
'''
Perform zero shot learning twice and return the offers relevant to the child categories
Parameters:
search_str (string) : user text input
categories (pd.DataFrame) : list of categories
cats (pd.DataFrame) : raw category data
processed_offers (pd.DataFrame) : processed_offer_data
Returns:
offers (pd.DataFrame) : relevant offers
labels (dict) : parent categories and their probability scores
labels_2 (dict) : child categories and their probability scores
'''
labels = pipe(search_str,
candidate_labels=categories,
)
# labels = [l for i, l in enumerate(labels["labels"]) if labels["scores"][i] > 0.20]
filtered_cats = list(cats[cats["IS_CHILD_CATEGORY_TO"].isin(labels["labels"][:3])]["PRODUCT_CATEGORY"].unique())
labels_2 = pipe(search_str,
candidate_labels=filtered_cats,
)
top_labels = labels_2["labels"][:3]
offers = processed_offers[processed_offers["CATEGORY"].apply(lambda x: bool(set(x) & set(top_labels)))]["OFFER"].reset_index()
return offers, labels, labels_2
def sort_by_similarity(search_str, related_offers):
'''
Use sentence embeddings to evaluate the similarity of relevant offers to the text input
Parameters:
search_str (string) : user text input
related_offers (pd.DataFrame) : relevant offers discovered by zero shot learning
Returns:
df (pd.DataFrame) : relevant offers and their similiarity scores
'''
temp_dict = {}
embedding_1 = model.encode(search_str, convert_to_tensor=True)
for offer in list(related_offers["OFFER"]):
embedding_2 = model.encode(offer, convert_to_tensor=True)
temp_dict[offer] = float(util.pytorch_cos_sim(embedding_1, embedding_2))
sorted_dict = dict(sorted(temp_dict.items(), key=lambda x : x[1], reverse=True))
df = pd.DataFrame({"OFFER":list(sorted_dict.keys())[:20], "scores":list(sorted_dict.values())[:20]})
return df
def main():
# Load and cache data
col_1, col_2, col_3 = st.columns(3)
search_str = col_1.text_input("Enter a retailer, brand, or category").capitalize()
processed_offers = get_processed_offers()
cats = get_categories_data()
offer_rets = get_offers_data()
categories = get_categories(cats)
if col_1.button("Search", type="primary"):
# Check offers where the text is directly in it
retail = is_retailer(search_str)
direct_offers = check_in_offer(search_str, offer_rets)
col_2.write("Directly related offers")
if len(direct_offers) == 0:
col_2.write("None found")
else:
col_2.table(direct_offers)
if retail:
# If retail, we directly compare every offer using sentence embeddings
related_offers = offer_rets[~offer_rets["OFFER"].isin(list(direct_offers["OFFER"]))]
else:
# Otherwise, we use zero shot learning with processed offers to narrow down our search
related_offers, labels_1, labels_2 = perform_cat_inference(search_str, categories, cats, processed_offers)
related_offers = related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))]
col_2.write("Parent categories probabilities")
col_2.table(pd.DataFrame({"labels": labels_1["labels"][:5], "scores": labels_1["scores"][:5]}))
col_2.write("Child categories probabilities")
col_2.table(pd.DataFrame({"labels": labels_2["labels"][:5], "scores": labels_2["scores"][:5]}))
col_2.write("Other related offers")
sorted_offers = sort_by_similarity(search_str, related_offers)
if len(sorted_offers) == 0:
col_2.write("None found")
else:
col_2.table(sorted_offers)
if __name__ == "__main__":
main()