|
import streamlit as st |
|
from transformers import pipeline |
|
import pickle |
|
import os |
|
import pandas as pd |
|
import ast |
|
import string |
|
import re |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
st.set_page_config( |
|
page_title="Offer Recommender", |
|
layout="wide" |
|
) |
|
|
|
|
|
pipe = pipeline(task="zero-shot-classification", model="valhalla/distilbart-mnli-12-3") |
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
dire = "DS_NLP_search_data" |
|
|
|
|
|
@st.cache_data |
|
def get_processed_offers(): |
|
''' |
|
Load processed offers from exploration notebook and cache |
|
|
|
Returns: |
|
processed_offers (pd.DataFrame) : zero-shot categorized offers |
|
''' |
|
processed_offers = pd.read_csv(os.path.join(dire, "processed_offers.csv")) |
|
processed_offers["CATEGORY"] = processed_offers["CATEGORY"].map(ast.literal_eval) |
|
|
|
return processed_offers |
|
|
|
|
|
@st.cache_data |
|
def get_categories_data(): |
|
''' |
|
Load raw category data and cache |
|
|
|
Returns: |
|
cats (pd.DataFrame) : raw category data |
|
''' |
|
|
|
cats = pd.read_csv(os.path.join(dire, "categories.csv")) |
|
|
|
return cats |
|
|
|
|
|
@st.cache_data |
|
def get_offers_data(): |
|
''' |
|
Load raw offfers data and cache |
|
|
|
Returns: |
|
cats (pd.DataFrame) : raw offers data |
|
''' |
|
|
|
offers = pd.read_csv(os.path.join(dire, "offer_retailer.csv")) |
|
|
|
return offers |
|
|
|
|
|
@st.cache_data |
|
def get_categories(cats_): |
|
''' |
|
Extract, load categories and cache |
|
|
|
Parameters: |
|
cats_ (pd.DataFrame) : raw categories data |
|
|
|
Returns: |
|
categories (List) : child categories |
|
''' |
|
|
|
categories = list(cats_["IS_CHILD_CATEGORY_TO"].unique()) |
|
for x in ["Mature"]: |
|
if x in categories: |
|
categories.remove(x) |
|
|
|
return categories |
|
|
|
|
|
def check_in_offer(search_str, offer_rets): |
|
''' |
|
Determine if the input text is directly in the offer with basic string matching |
|
|
|
Parameters: |
|
search_str (string) : user text input |
|
offer_rets (pd.DataFrame) : raw offer data |
|
|
|
Returns: |
|
df (pd.DataFrame) : offers with text input |
|
''' |
|
|
|
offers = [] |
|
for i in range(len(offer_rets)): |
|
offer_str = offer_rets.iloc[i]["OFFER"] |
|
parsed_str = offer_str.lower().translate(str.maketrans('', '', string.punctuation)) |
|
parsed_str = re.sub('[^a-zA-Z0-9 \n\.]', '', parsed_str) |
|
|
|
if search_str.lower() in parsed_str.split(" "): |
|
offers.append(offer_str) |
|
df = pd.DataFrame({"OFFER":offers}) |
|
|
|
return df |
|
|
|
|
|
def is_retailer(search_str, threshold=0.5): |
|
''' |
|
Determine if the text input is highly likely to be a retailer |
|
|
|
Parameters: |
|
search_str (string) : user text input |
|
threshold (int) : probability threshold |
|
|
|
Returns: |
|
is_ret (boolean) : true if retailer, false otherwise |
|
''' |
|
|
|
processed_search_str = search_str.lower().capitalize() |
|
labels = pipe(processed_search_str, |
|
candidate_labels=["brand", "retailer", "item"], |
|
) |
|
|
|
is_ret = labels["labels"][0] == "retailer" and labels["scores"][0] > threshold |
|
|
|
return is_ret |
|
|
|
|
|
def perform_cat_inference(search_str, categories, cats, processed_offers): |
|
''' |
|
Perform zero shot learning twice and return the offers relevant to the child categories |
|
|
|
Parameters: |
|
search_str (string) : user text input |
|
categories (pd.DataFrame) : list of categories |
|
cats (pd.DataFrame) : raw category data |
|
processed_offers (pd.DataFrame) : processed_offer_data |
|
|
|
Returns: |
|
offers (pd.DataFrame) : relevant offers |
|
labels (dict) : parent categories and their probability scores |
|
labels_2 (dict) : child categories and their probability scores |
|
''' |
|
|
|
labels = pipe(search_str, |
|
candidate_labels=categories, |
|
) |
|
|
|
filtered_cats = list(cats[cats["IS_CHILD_CATEGORY_TO"].isin(labels["labels"][:3])]["PRODUCT_CATEGORY"].unique()) |
|
labels_2 = pipe(search_str, |
|
candidate_labels=filtered_cats, |
|
) |
|
top_labels = labels_2["labels"][:3] |
|
offers = processed_offers[processed_offers["CATEGORY"].apply(lambda x: bool(set(x) & set(top_labels)))]["OFFER"].reset_index() |
|
|
|
return offers, labels, labels_2 |
|
|
|
|
|
def sort_by_similarity(search_str, related_offers): |
|
''' |
|
Use sentence embeddings to evaluate the similarity of relevant offers to the text input |
|
|
|
Parameters: |
|
search_str (string) : user text input |
|
related_offers (pd.DataFrame) : relevant offers discovered by zero shot learning |
|
|
|
Returns: |
|
df (pd.DataFrame) : relevant offers and their similiarity scores |
|
''' |
|
|
|
temp_dict = {} |
|
embedding_1 = model.encode(search_str, convert_to_tensor=True) |
|
|
|
for offer in list(related_offers["OFFER"]): |
|
embedding_2 = model.encode(offer, convert_to_tensor=True) |
|
|
|
temp_dict[offer] = float(util.pytorch_cos_sim(embedding_1, embedding_2)) |
|
|
|
sorted_dict = dict(sorted(temp_dict.items(), key=lambda x : x[1], reverse=True)) |
|
df = pd.DataFrame({"OFFER":list(sorted_dict.keys())[:20], "scores":list(sorted_dict.values())[:20]}) |
|
|
|
return df |
|
|
|
|
|
def main(): |
|
|
|
col_1, col_2, col_3 = st.columns(3) |
|
search_str = col_1.text_input("Enter a retailer, brand, or category").capitalize() |
|
processed_offers = get_processed_offers() |
|
cats = get_categories_data() |
|
offer_rets = get_offers_data() |
|
categories = get_categories(cats) |
|
|
|
if col_1.button("Search", type="primary"): |
|
|
|
retail = is_retailer(search_str) |
|
direct_offers = check_in_offer(search_str, offer_rets) |
|
col_2.write("Directly related offers") |
|
|
|
if len(direct_offers) == 0: |
|
col_2.write("None found") |
|
else: |
|
col_2.table(direct_offers) |
|
|
|
if retail: |
|
|
|
related_offers = offer_rets[~offer_rets["OFFER"].isin(list(direct_offers["OFFER"]))] |
|
else: |
|
|
|
related_offers, labels_1, labels_2 = perform_cat_inference(search_str, categories, cats, processed_offers) |
|
related_offers = related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))] |
|
|
|
col_2.write("Parent categories probabilities") |
|
col_2.table(pd.DataFrame({"labels": labels_1["labels"][:5], "scores": labels_1["scores"][:5]})) |
|
col_2.write("Child categories probabilities") |
|
col_2.table(pd.DataFrame({"labels": labels_2["labels"][:5], "scores": labels_2["scores"][:5]})) |
|
|
|
col_2.write("Other related offers") |
|
sorted_offers = sort_by_similarity(search_str, related_offers) |
|
|
|
if len(sorted_offers) == 0: |
|
col_2.write("None found") |
|
else: |
|
col_2.table(sorted_offers) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|