vits_onnx / export /vits /export_onnx.py
chocolatedesue
init
223aff6
raw
history blame
5.09 kB
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import sys
import torch
from models import SynthesizerTrn
import utils
try:
import onnxruntime as ort
except ImportError:
print('Please install onnxruntime!')
sys.exit(1)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad \
else tensor.detach().numpy()
def get_args():
parser = argparse.ArgumentParser(description='export onnx model')
parser.add_argument('--checkpoint', required=True, help='checkpoint')
parser.add_argument('--cfg', required=True, help='config file')
parser.add_argument('--onnx_model', required=True, help='onnx model name')
# parser.add_argument('--phone_table',
# required=True,
# help='input phone dict')
# parser.add_argument('--speaker_table', default=None, help='speaker table')
# parser.add_argument("--speaker_num", required=True,
# type=int, help="speaker num")
parser.add_argument(
'--providers',
required=False,
default='CPUExecutionProvider',
choices=['CUDAExecutionProvider', 'CPUExecutionProvider'],
help='the model to send request to')
args = parser.parse_args()
return args
def get_data_from_cfg(cfg_path: str):
assert os.path.isfile(cfg_path)
with open(cfg_path, 'r') as f:
data = json.load(f)
symbols = data["symbols"]
speaker_num = data["data"]["n_speakers"]
return len(symbols), speaker_num
def main():
args = get_args()
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
hps = utils.get_hparams_from_file(args.cfg)
# with open(args.phone_table) as p_f:
# phone_num = len(p_f.readlines()) + 1
# num_speakers = 1
# if args.speaker_table is not None:
# num_speakers = len(open(args.speaker_table).readlines()) + 1
phone_num, num_speakers = get_data_from_cfg(args.cfg)
net_g = SynthesizerTrn(phone_num,
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=num_speakers,
**hps.model)
utils.load_checkpoint(args.checkpoint, net_g, None)
net_g.forward = net_g.export_forward
net_g.eval()
seq = torch.randint(low=0, high=phone_num, size=(1, 10), dtype=torch.long)
seq_len = torch.IntTensor([seq.size(1)]).long()
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
# 参考 https://github.com/gbxh/genshinTTS
scales = torch.FloatTensor([0.667, 1.0, 0.8])
# make triton dynamic shape happy
scales = scales.unsqueeze(0)
sid = torch.IntTensor([0]).long()
dummy_input = (seq, seq_len, scales, sid)
torch.onnx.export(model=net_g,
args=dummy_input,
f=args.onnx_model,
input_names=['input', 'input_lengths', 'scales', 'sid'],
output_names=['output'],
dynamic_axes={
'input': {
0: 'batch',
1: 'phonemes'
},
'input_lengths': {
0: 'batch'
},
'scales': {
0: 'batch'
},
'sid': {
0: 'batch'
},
'output': {
0: 'batch',
1: 'audio',
2: 'audio_length'
}
},
opset_version=13,
verbose=False)
# Verify onnx precision
torch_output = net_g(seq, seq_len, scales, sid)
providers = [args.providers]
ort_sess = ort.InferenceSession(args.onnx_model, providers=providers)
ort_inputs = {
'input': to_numpy(seq),
'input_lengths': to_numpy(seq_len),
'scales': to_numpy(scales),
'sid': to_numpy(sid),
}
onnx_output = ort_sess.run(None, ort_inputs)
if __name__ == '__main__':
main()