chocolatedesue
commited on
Commit
•
223aff6
1
Parent(s):
6641bc1
init
Browse files- Dockerfile +31 -0
- LICENSE +339 -0
- README.md +60 -11
- app/__init__.py +31 -0
- app/config.py +123 -0
- app/init_jptalk.py +9 -0
- app/main.py +94 -0
- app/text/LICENSE +19 -0
- app/text/__init__.py +49 -0
- app/text/cleaners.py +58 -0
- app/text/symbols.py +39 -0
- app/util.py +86 -0
- build.sh +20 -0
- export/LICENSE +201 -0
- export/README.md +8 -0
- export/export.sh +19 -0
- export/infer.sh +2 -0
- export/requirements.txt +21 -0
- export/setup.sh +18 -0
- export/test.txt +1 -0
- export/vits/attentions.py +392 -0
- export/vits/commons.py +161 -0
- export/vits/data_utils.py +307 -0
- export/vits/export_onnx.py +140 -0
- export/vits/inference.py +98 -0
- export/vits/inference_onnx.py +148 -0
- export/vits/losses.py +58 -0
- export/vits/mel_processing.py +137 -0
- export/vits/models.py +672 -0
- export/vits/modules.py +469 -0
- export/vits/text/LICENSE +19 -0
- export/vits/text/__init__.py +37 -0
- export/vits/text/cleaners.py +58 -0
- export/vits/text/symbols.py +39 -0
- export/vits/train.py +328 -0
- export/vits/transforms.py +200 -0
- export/vits/utils.py +307 -0
- poetry.lock +0 -0
- pyproject.toml +20 -0
- requirements.txt +77 -0
- setup.sh +22 -0
- util/build_docker.sh +2 -0
- util/extract_w.py +20 -0
Dockerfile
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# create time : 2023.1.09
|
2 |
+
# onnxruntime==1.13.1 not supported py=3.11
|
3 |
+
# FROM python:3.11.1-slim-bullseye as compile-image
|
4 |
+
FROM python:3.9.15-slim-bullseye as compile-image
|
5 |
+
|
6 |
+
ENV POETRY_VERSION=1.3.1
|
7 |
+
|
8 |
+
RUN export DEBIAN_FRONTEND=noninteractive && \
|
9 |
+
apt-get update && \
|
10 |
+
apt-get install cmake build-essential -y --no-install-recommends && \
|
11 |
+
pip install poetry==$POETRY_VERSION
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
COPY ./pyproject.toml ./app/init_jptalk.py ./poetry.lock ./
|
16 |
+
RUN poetry export -f requirements.txt -o requirements.txt --without dev --without test --without-hashes && \
|
17 |
+
python -m venv /opt/venv && \
|
18 |
+
/opt/venv/bin/pip install --no-cache-dir -U pip && \
|
19 |
+
/opt/venv/bin/pip install --no-cache-dir -r requirements.txt && \
|
20 |
+
/opt/venv/bin/python3 init_jptalk.py
|
21 |
+
|
22 |
+
# FROM python:3.11.1-slim-bullseye as final
|
23 |
+
FROM python:3.9.15-slim-bullseye as final
|
24 |
+
EXPOSE 7860
|
25 |
+
COPY --from=compile-image /opt/venv /opt/venv
|
26 |
+
# COPY ./app/init_jptalk.py /app/init_jptalk.py
|
27 |
+
ENV TZ=Asia/Shanghai PATH="/opt/venv/bin:$PATH"
|
28 |
+
|
29 |
+
COPY ./app /app
|
30 |
+
WORKDIR /
|
31 |
+
CMD ["python", "-m","app.main"]
|
LICENSE
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 2, June 1991
|
3 |
+
|
4 |
+
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
5 |
+
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
6 |
+
Everyone is permitted to copy and distribute verbatim copies
|
7 |
+
of this license document, but changing it is not allowed.
|
8 |
+
|
9 |
+
Preamble
|
10 |
+
|
11 |
+
The licenses for most software are designed to take away your
|
12 |
+
freedom to share and change it. By contrast, the GNU General Public
|
13 |
+
License is intended to guarantee your freedom to share and change free
|
14 |
+
software--to make sure the software is free for all its users. This
|
15 |
+
General Public License applies to most of the Free Software
|
16 |
+
Foundation's software and to any other program whose authors commit to
|
17 |
+
using it. (Some other Free Software Foundation software is covered by
|
18 |
+
the GNU Lesser General Public License instead.) You can apply it to
|
19 |
+
your programs, too.
|
20 |
+
|
21 |
+
When we speak of free software, we are referring to freedom, not
|
22 |
+
price. Our General Public Licenses are designed to make sure that you
|
23 |
+
have the freedom to distribute copies of free software (and charge for
|
24 |
+
this service if you wish), that you receive source code or can get it
|
25 |
+
if you want it, that you can change the software or use pieces of it
|
26 |
+
in new free programs; and that you know you can do these things.
|
27 |
+
|
28 |
+
To protect your rights, we need to make restrictions that forbid
|
29 |
+
anyone to deny you these rights or to ask you to surrender the rights.
|
30 |
+
These restrictions translate to certain responsibilities for you if you
|
31 |
+
distribute copies of the software, or if you modify it.
|
32 |
+
|
33 |
+
For example, if you distribute copies of such a program, whether
|
34 |
+
gratis or for a fee, you must give the recipients all the rights that
|
35 |
+
you have. You must make sure that they, too, receive or can get the
|
36 |
+
source code. And you must show them these terms so they know their
|
37 |
+
rights.
|
38 |
+
|
39 |
+
We protect your rights with two steps: (1) copyright the software, and
|
40 |
+
(2) offer you this license which gives you legal permission to copy,
|
41 |
+
distribute and/or modify the software.
|
42 |
+
|
43 |
+
Also, for each author's protection and ours, we want to make certain
|
44 |
+
that everyone understands that there is no warranty for this free
|
45 |
+
software. If the software is modified by someone else and passed on, we
|
46 |
+
want its recipients to know that what they have is not the original, so
|
47 |
+
that any problems introduced by others will not reflect on the original
|
48 |
+
authors' reputations.
|
49 |
+
|
50 |
+
Finally, any free program is threatened constantly by software
|
51 |
+
patents. We wish to avoid the danger that redistributors of a free
|
52 |
+
program will individually obtain patent licenses, in effect making the
|
53 |
+
program proprietary. To prevent this, we have made it clear that any
|
54 |
+
patent must be licensed for everyone's free use or not licensed at all.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
GNU GENERAL PUBLIC LICENSE
|
60 |
+
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
61 |
+
|
62 |
+
0. This License applies to any program or other work which contains
|
63 |
+
a notice placed by the copyright holder saying it may be distributed
|
64 |
+
under the terms of this General Public License. The "Program", below,
|
65 |
+
refers to any such program or work, and a "work based on the Program"
|
66 |
+
means either the Program or any derivative work under copyright law:
|
67 |
+
that is to say, a work containing the Program or a portion of it,
|
68 |
+
either verbatim or with modifications and/or translated into another
|
69 |
+
language. (Hereinafter, translation is included without limitation in
|
70 |
+
the term "modification".) Each licensee is addressed as "you".
|
71 |
+
|
72 |
+
Activities other than copying, distribution and modification are not
|
73 |
+
covered by this License; they are outside its scope. The act of
|
74 |
+
running the Program is not restricted, and the output from the Program
|
75 |
+
is covered only if its contents constitute a work based on the
|
76 |
+
Program (independent of having been made by running the Program).
|
77 |
+
Whether that is true depends on what the Program does.
|
78 |
+
|
79 |
+
1. You may copy and distribute verbatim copies of the Program's
|
80 |
+
source code as you receive it, in any medium, provided that you
|
81 |
+
conspicuously and appropriately publish on each copy an appropriate
|
82 |
+
copyright notice and disclaimer of warranty; keep intact all the
|
83 |
+
notices that refer to this License and to the absence of any warranty;
|
84 |
+
and give any other recipients of the Program a copy of this License
|
85 |
+
along with the Program.
|
86 |
+
|
87 |
+
You may charge a fee for the physical act of transferring a copy, and
|
88 |
+
you may at your option offer warranty protection in exchange for a fee.
|
89 |
+
|
90 |
+
2. You may modify your copy or copies of the Program or any portion
|
91 |
+
of it, thus forming a work based on the Program, and copy and
|
92 |
+
distribute such modifications or work under the terms of Section 1
|
93 |
+
above, provided that you also meet all of these conditions:
|
94 |
+
|
95 |
+
a) You must cause the modified files to carry prominent notices
|
96 |
+
stating that you changed the files and the date of any change.
|
97 |
+
|
98 |
+
b) You must cause any work that you distribute or publish, that in
|
99 |
+
whole or in part contains or is derived from the Program or any
|
100 |
+
part thereof, to be licensed as a whole at no charge to all third
|
101 |
+
parties under the terms of this License.
|
102 |
+
|
103 |
+
c) If the modified program normally reads commands interactively
|
104 |
+
when run, you must cause it, when started running for such
|
105 |
+
interactive use in the most ordinary way, to print or display an
|
106 |
+
announcement including an appropriate copyright notice and a
|
107 |
+
notice that there is no warranty (or else, saying that you provide
|
108 |
+
a warranty) and that users may redistribute the program under
|
109 |
+
these conditions, and telling the user how to view a copy of this
|
110 |
+
License. (Exception: if the Program itself is interactive but
|
111 |
+
does not normally print such an announcement, your work based on
|
112 |
+
the Program is not required to print an announcement.)
|
113 |
+
|
114 |
+
These requirements apply to the modified work as a whole. If
|
115 |
+
identifiable sections of that work are not derived from the Program,
|
116 |
+
and can be reasonably considered independent and separate works in
|
117 |
+
themselves, then this License, and its terms, do not apply to those
|
118 |
+
sections when you distribute them as separate works. But when you
|
119 |
+
distribute the same sections as part of a whole which is a work based
|
120 |
+
on the Program, the distribution of the whole must be on the terms of
|
121 |
+
this License, whose permissions for other licensees extend to the
|
122 |
+
entire whole, and thus to each and every part regardless of who wrote it.
|
123 |
+
|
124 |
+
Thus, it is not the intent of this section to claim rights or contest
|
125 |
+
your rights to work written entirely by you; rather, the intent is to
|
126 |
+
exercise the right to control the distribution of derivative or
|
127 |
+
collective works based on the Program.
|
128 |
+
|
129 |
+
In addition, mere aggregation of another work not based on the Program
|
130 |
+
with the Program (or with a work based on the Program) on a volume of
|
131 |
+
a storage or distribution medium does not bring the other work under
|
132 |
+
the scope of this License.
|
133 |
+
|
134 |
+
3. You may copy and distribute the Program (or a work based on it,
|
135 |
+
under Section 2) in object code or executable form under the terms of
|
136 |
+
Sections 1 and 2 above provided that you also do one of the following:
|
137 |
+
|
138 |
+
a) Accompany it with the complete corresponding machine-readable
|
139 |
+
source code, which must be distributed under the terms of Sections
|
140 |
+
1 and 2 above on a medium customarily used for software interchange; or,
|
141 |
+
|
142 |
+
b) Accompany it with a written offer, valid for at least three
|
143 |
+
years, to give any third party, for a charge no more than your
|
144 |
+
cost of physically performing source distribution, a complete
|
145 |
+
machine-readable copy of the corresponding source code, to be
|
146 |
+
distributed under the terms of Sections 1 and 2 above on a medium
|
147 |
+
customarily used for software interchange; or,
|
148 |
+
|
149 |
+
c) Accompany it with the information you received as to the offer
|
150 |
+
to distribute corresponding source code. (This alternative is
|
151 |
+
allowed only for noncommercial distribution and only if you
|
152 |
+
received the program in object code or executable form with such
|
153 |
+
an offer, in accord with Subsection b above.)
|
154 |
+
|
155 |
+
The source code for a work means the preferred form of the work for
|
156 |
+
making modifications to it. For an executable work, complete source
|
157 |
+
code means all the source code for all modules it contains, plus any
|
158 |
+
associated interface definition files, plus the scripts used to
|
159 |
+
control compilation and installation of the executable. However, as a
|
160 |
+
special exception, the source code distributed need not include
|
161 |
+
anything that is normally distributed (in either source or binary
|
162 |
+
form) with the major components (compiler, kernel, and so on) of the
|
163 |
+
operating system on which the executable runs, unless that component
|
164 |
+
itself accompanies the executable.
|
165 |
+
|
166 |
+
If distribution of executable or object code is made by offering
|
167 |
+
access to copy from a designated place, then offering equivalent
|
168 |
+
access to copy the source code from the same place counts as
|
169 |
+
distribution of the source code, even though third parties are not
|
170 |
+
compelled to copy the source along with the object code.
|
171 |
+
|
172 |
+
4. You may not copy, modify, sublicense, or distribute the Program
|
173 |
+
except as expressly provided under this License. Any attempt
|
174 |
+
otherwise to copy, modify, sublicense or distribute the Program is
|
175 |
+
void, and will automatically terminate your rights under this License.
|
176 |
+
However, parties who have received copies, or rights, from you under
|
177 |
+
this License will not have their licenses terminated so long as such
|
178 |
+
parties remain in full compliance.
|
179 |
+
|
180 |
+
5. You are not required to accept this License, since you have not
|
181 |
+
signed it. However, nothing else grants you permission to modify or
|
182 |
+
distribute the Program or its derivative works. These actions are
|
183 |
+
prohibited by law if you do not accept this License. Therefore, by
|
184 |
+
modifying or distributing the Program (or any work based on the
|
185 |
+
Program), you indicate your acceptance of this License to do so, and
|
186 |
+
all its terms and conditions for copying, distributing or modifying
|
187 |
+
the Program or works based on it.
|
188 |
+
|
189 |
+
6. Each time you redistribute the Program (or any work based on the
|
190 |
+
Program), the recipient automatically receives a license from the
|
191 |
+
original licensor to copy, distribute or modify the Program subject to
|
192 |
+
these terms and conditions. You may not impose any further
|
193 |
+
restrictions on the recipients' exercise of the rights granted herein.
|
194 |
+
You are not responsible for enforcing compliance by third parties to
|
195 |
+
this License.
|
196 |
+
|
197 |
+
7. If, as a consequence of a court judgment or allegation of patent
|
198 |
+
infringement or for any other reason (not limited to patent issues),
|
199 |
+
conditions are imposed on you (whether by court order, agreement or
|
200 |
+
otherwise) that contradict the conditions of this License, they do not
|
201 |
+
excuse you from the conditions of this License. If you cannot
|
202 |
+
distribute so as to satisfy simultaneously your obligations under this
|
203 |
+
License and any other pertinent obligations, then as a consequence you
|
204 |
+
may not distribute the Program at all. For example, if a patent
|
205 |
+
license would not permit royalty-free redistribution of the Program by
|
206 |
+
all those who receive copies directly or indirectly through you, then
|
207 |
+
the only way you could satisfy both it and this License would be to
|
208 |
+
refrain entirely from distribution of the Program.
|
209 |
+
|
210 |
+
If any portion of this section is held invalid or unenforceable under
|
211 |
+
any particular circumstance, the balance of the section is intended to
|
212 |
+
apply and the section as a whole is intended to apply in other
|
213 |
+
circumstances.
|
214 |
+
|
215 |
+
It is not the purpose of this section to induce you to infringe any
|
216 |
+
patents or other property right claims or to contest validity of any
|
217 |
+
such claims; this section has the sole purpose of protecting the
|
218 |
+
integrity of the free software distribution system, which is
|
219 |
+
implemented by public license practices. Many people have made
|
220 |
+
generous contributions to the wide range of software distributed
|
221 |
+
through that system in reliance on consistent application of that
|
222 |
+
system; it is up to the author/donor to decide if he or she is willing
|
223 |
+
to distribute software through any other system and a licensee cannot
|
224 |
+
impose that choice.
|
225 |
+
|
226 |
+
This section is intended to make thoroughly clear what is believed to
|
227 |
+
be a consequence of the rest of this License.
|
228 |
+
|
229 |
+
8. If the distribution and/or use of the Program is restricted in
|
230 |
+
certain countries either by patents or by copyrighted interfaces, the
|
231 |
+
original copyright holder who places the Program under this License
|
232 |
+
may add an explicit geographical distribution limitation excluding
|
233 |
+
those countries, so that distribution is permitted only in or among
|
234 |
+
countries not thus excluded. In such case, this License incorporates
|
235 |
+
the limitation as if written in the body of this License.
|
236 |
+
|
237 |
+
9. The Free Software Foundation may publish revised and/or new versions
|
238 |
+
of the General Public License from time to time. Such new versions will
|
239 |
+
be similar in spirit to the present version, but may differ in detail to
|
240 |
+
address new problems or concerns.
|
241 |
+
|
242 |
+
Each version is given a distinguishing version number. If the Program
|
243 |
+
specifies a version number of this License which applies to it and "any
|
244 |
+
later version", you have the option of following the terms and conditions
|
245 |
+
either of that version or of any later version published by the Free
|
246 |
+
Software Foundation. If the Program does not specify a version number of
|
247 |
+
this License, you may choose any version ever published by the Free Software
|
248 |
+
Foundation.
|
249 |
+
|
250 |
+
10. If you wish to incorporate parts of the Program into other free
|
251 |
+
programs whose distribution conditions are different, write to the author
|
252 |
+
to ask for permission. For software which is copyrighted by the Free
|
253 |
+
Software Foundation, write to the Free Software Foundation; we sometimes
|
254 |
+
make exceptions for this. Our decision will be guided by the two goals
|
255 |
+
of preserving the free status of all derivatives of our free software and
|
256 |
+
of promoting the sharing and reuse of software generally.
|
257 |
+
|
258 |
+
NO WARRANTY
|
259 |
+
|
260 |
+
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
261 |
+
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
262 |
+
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
263 |
+
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
264 |
+
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
265 |
+
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
266 |
+
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
267 |
+
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
268 |
+
REPAIR OR CORRECTION.
|
269 |
+
|
270 |
+
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
271 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
272 |
+
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
273 |
+
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
274 |
+
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
275 |
+
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
276 |
+
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
277 |
+
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
278 |
+
POSSIBILITY OF SUCH DAMAGES.
|
279 |
+
|
280 |
+
END OF TERMS AND CONDITIONS
|
281 |
+
|
282 |
+
How to Apply These Terms to Your New Programs
|
283 |
+
|
284 |
+
If you develop a new program, and you want it to be of the greatest
|
285 |
+
possible use to the public, the best way to achieve this is to make it
|
286 |
+
free software which everyone can redistribute and change under these terms.
|
287 |
+
|
288 |
+
To do so, attach the following notices to the program. It is safest
|
289 |
+
to attach them to the start of each source file to most effectively
|
290 |
+
convey the exclusion of warranty; and each file should have at least
|
291 |
+
the "copyright" line and a pointer to where the full notice is found.
|
292 |
+
|
293 |
+
<one line to give the program's name and a brief idea of what it does.>
|
294 |
+
Copyright (C) <year> <name of author>
|
295 |
+
|
296 |
+
This program is free software; you can redistribute it and/or modify
|
297 |
+
it under the terms of the GNU General Public License as published by
|
298 |
+
the Free Software Foundation; either version 2 of the License, or
|
299 |
+
(at your option) any later version.
|
300 |
+
|
301 |
+
This program is distributed in the hope that it will be useful,
|
302 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
303 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
304 |
+
GNU General Public License for more details.
|
305 |
+
|
306 |
+
You should have received a copy of the GNU General Public License along
|
307 |
+
with this program; if not, write to the Free Software Foundation, Inc.,
|
308 |
+
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
309 |
+
|
310 |
+
Also add information on how to contact you by electronic and paper mail.
|
311 |
+
|
312 |
+
If the program is interactive, make it output a short notice like this
|
313 |
+
when it starts in an interactive mode:
|
314 |
+
|
315 |
+
Gnomovision version 69, Copyright (C) year name of author
|
316 |
+
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
317 |
+
This is free software, and you are welcome to redistribute it
|
318 |
+
under certain conditions; type `show c' for details.
|
319 |
+
|
320 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
321 |
+
parts of the General Public License. Of course, the commands you use may
|
322 |
+
be called something other than `show w' and `show c'; they could even be
|
323 |
+
mouse-clicks or menu items--whatever suits your program.
|
324 |
+
|
325 |
+
You should also get your employer (if you work as a programmer) or your
|
326 |
+
school, if any, to sign a "copyright disclaimer" for the program, if
|
327 |
+
necessary. Here is a sample; alter the names:
|
328 |
+
|
329 |
+
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
330 |
+
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
331 |
+
|
332 |
+
<signature of Ty Coon>, 1 April 1989
|
333 |
+
Ty Coon, President of Vice
|
334 |
+
|
335 |
+
This General Public License does not permit incorporating your program into
|
336 |
+
proprietary programs. If your program is a subroutine library, you may
|
337 |
+
consider it more useful to permit linking proprietary applications with the
|
338 |
+
library. If this is what you want to do, use the GNU Lesser General
|
339 |
+
Public License instead of this License.
|
README.md
CHANGED
@@ -1,11 +1,60 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## onnx inference server in docker container
|
2 |
+
|
3 |
+
### Copy the demo web from [link](https://huggingface.co/spaces/skytnt/moe-japanese-tts/tree/main)
|
4 |
+
> Thanks a lot to [@CjangCjengh](https://github.com/CjangCjengh)
|
5 |
+
> Thanks a lot to [wetts](https://github.com/wenet-e2e/wetts)
|
6 |
+
|
7 |
+
***Only used for entertainment.
|
8 |
+
Don't used for bussiness***
|
9 |
+
|
10 |
+
### quick start
|
11 |
+
> To use other model and config<br> please use -v /path/to/dir:/app/.model to mount your model and config
|
12 |
+
|
13 |
+
```shell
|
14 |
+
export name=vits_onnx
|
15 |
+
docker stop $name
|
16 |
+
docker rm $name
|
17 |
+
docker run -d \
|
18 |
+
--name $name \
|
19 |
+
-p 7860:7860 \
|
20 |
+
ccdesue/vits_demo:onnx
|
21 |
+
# -v /path/to/dir:/app/.model
|
22 |
+
```
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
### dir structure
|
28 |
+
```
|
29 |
+
|
30 |
+
├── app # gradio code
|
31 |
+
├── build.sh
|
32 |
+
├── Dockerfile
|
33 |
+
├── export # some util for export model
|
34 |
+
├── LICENSE
|
35 |
+
├── poetry.lock
|
36 |
+
├── __pycache__
|
37 |
+
├── pyproject.toml
|
38 |
+
├── README.md
|
39 |
+
├── setup.sh
|
40 |
+
└── util # some posibile util
|
41 |
+
|
42 |
+
```
|
43 |
+
|
44 |
+
### Helpful info
|
45 |
+
1. please read the source code to better understand
|
46 |
+
2. refer to the demo config.json to tail to your own model config
|
47 |
+
3. refer the dockerfile
|
48 |
+
|
49 |
+
### limitation
|
50 |
+
1. only test on japanese_cleaners and japanese_cleaners2 in config.json with [raw vits](https://github.com/jaywalnut310/vits)
|
51 |
+
|
52 |
+
|
53 |
+
### Reference
|
54 |
+
1. [vits_export_discussion](https://github.com/MasayaKawamura/MB-iSTFT-VITS/issues/8)
|
55 |
+
2. [other_vits_onnx](https://github.com/NaruseMioShirakana/VitsOnnx)
|
56 |
+
3. [wetts](https://github.com/wenet-e2e/wetts)
|
57 |
+
4. [android_vits](https://github.com/weirdseed/Vits-Android-ncnn)
|
58 |
+
|
59 |
+
### license
|
60 |
+
GPLv2
|
app/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
class HParams():
|
3 |
+
def __init__(self, **kwargs):
|
4 |
+
for k, v in kwargs.items():
|
5 |
+
if type(v) == dict:
|
6 |
+
v = HParams(**v)
|
7 |
+
self[k] = v
|
8 |
+
|
9 |
+
def keys(self):
|
10 |
+
return self.__dict__.keys()
|
11 |
+
|
12 |
+
def items(self):
|
13 |
+
return self.__dict__.items()
|
14 |
+
|
15 |
+
def values(self):
|
16 |
+
return self.__dict__.values()
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return len(self.__dict__)
|
20 |
+
|
21 |
+
def __getitem__(self, key):
|
22 |
+
return getattr(self, key)
|
23 |
+
|
24 |
+
def __setitem__(self, key, value):
|
25 |
+
return setattr(self, key, value)
|
26 |
+
|
27 |
+
def __contains__(self, key):
|
28 |
+
return key in self.__dict__
|
29 |
+
|
30 |
+
def __repr__(self):
|
31 |
+
return self.__dict__.__repr__()
|
app/config.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from loguru import logger
|
5 |
+
# from app import CONFIG_URL, MODEL_URL
|
6 |
+
from app.util import get_hparams_from_file, get_paths, time_it
|
7 |
+
import requests
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import re
|
10 |
+
from re import Pattern
|
11 |
+
import onnxruntime as ort
|
12 |
+
import threading
|
13 |
+
|
14 |
+
|
15 |
+
MODEL_URL = r"https://api.onedrive.com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBdG53cTVRejJnLTJmckZWcGdCR0xxLWJmU28/root/content"
|
16 |
+
CONFIG_URL = r"https://api.onedrive.com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBdG53cTVRejJnLTJhNEJ3enhhUHpqNE5EZWc/root/content"
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
class Config:
|
21 |
+
hps: dict = None
|
22 |
+
pattern: Pattern = None
|
23 |
+
# symbol_to_id:dict = None
|
24 |
+
speaker_choices: list = None
|
25 |
+
ort_sess: ort.InferenceSession = None
|
26 |
+
model_is_ok: bool = False
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
def init(cls):
|
30 |
+
|
31 |
+
# logger.add(
|
32 |
+
# "vits_infer.log", rotation="10 MB", encoding="utf-8", enqueue=True, retention="30 days"
|
33 |
+
# )
|
34 |
+
|
35 |
+
brackets = ['(', '[', '『', '「', '【', ")", "】", "]", "』", "」", ")"]
|
36 |
+
cls.pattern = re.compile('|'.join(map(re.escape, brackets)))
|
37 |
+
|
38 |
+
dir_path = Path(__file__).parent.absolute() / ".model"
|
39 |
+
dir_path.mkdir(
|
40 |
+
parents=True, exist_ok=True
|
41 |
+
)
|
42 |
+
model_path, config_path = get_paths(dir_path)
|
43 |
+
|
44 |
+
if not model_path or not config_path:
|
45 |
+
model_path = dir_path / "model.onnx"
|
46 |
+
config_path = dir_path / "config.json"
|
47 |
+
logger.warning(
|
48 |
+
"unable to find model or config, try to download default model and config"
|
49 |
+
)
|
50 |
+
cfg = requests.get(CONFIG_URL, timeout=5).content
|
51 |
+
with open(str(config_path), 'wb') as f:
|
52 |
+
f.write(cfg)
|
53 |
+
cls.setup_config(str(config_path))
|
54 |
+
t = threading.Thread(target=cls.pdownload,
|
55 |
+
args=(MODEL_URL, str(model_path)))
|
56 |
+
t.start()
|
57 |
+
# cls.pdownload(MODEL_URL, str(model_path))
|
58 |
+
|
59 |
+
else:
|
60 |
+
cls.setup_config(str(config_path))
|
61 |
+
cls.setup_model(str(model_path))
|
62 |
+
|
63 |
+
@classmethod
|
64 |
+
@logger.catch
|
65 |
+
@time_it
|
66 |
+
def setup_model(cls, model_path: str):
|
67 |
+
import numpy as np
|
68 |
+
cls.ort_sess = ort.InferenceSession(model_path)
|
69 |
+
# init the model
|
70 |
+
seq = np.random.randint(low=0, high=len(
|
71 |
+
cls.hps.symbols), size=(1, 10), dtype=np.int64)
|
72 |
+
|
73 |
+
# seq_len = torch.IntTensor([seq.size(1)]).long()
|
74 |
+
seq_len = np.array([seq.shape[1]], dtype=np.int64)
|
75 |
+
|
76 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
77 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
78 |
+
# scales = torch.FloatTensor([0.667, 1.0, 0.8])
|
79 |
+
scales = np.array([0.667, 1.0, 0.8], dtype=np.float32)
|
80 |
+
# make triton dynamic shape happy
|
81 |
+
# scales = scales.unsqueeze(0)
|
82 |
+
scales.resize(1, 3)
|
83 |
+
# sid = torch.IntTensor([0]).long()
|
84 |
+
sid = np.array([0], dtype=np.int64)
|
85 |
+
# sid = torch.LongTensor([0])
|
86 |
+
ort_inputs = {
|
87 |
+
'input': seq,
|
88 |
+
'input_lengths': seq_len,
|
89 |
+
'scales': scales,
|
90 |
+
'sid': sid
|
91 |
+
}
|
92 |
+
cls.ort_sess.run(None, ort_inputs)
|
93 |
+
|
94 |
+
cls.model_is_ok = True
|
95 |
+
|
96 |
+
logger.info(
|
97 |
+
f"model init done with model path {model_path}"
|
98 |
+
)
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def setup_config(cls, config_path: str):
|
102 |
+
cls.hps = get_hparams_from_file(config_path)
|
103 |
+
cls.speaker_choices = list(
|
104 |
+
map(lambda x: str(x[0])+":"+x[1], enumerate(cls.hps.speakers)))
|
105 |
+
|
106 |
+
logger.info(
|
107 |
+
f"config init done with config path {config_path}"
|
108 |
+
)
|
109 |
+
|
110 |
+
@classmethod
|
111 |
+
def pdownload(cls, url: str, save_path: str, chunk_size: int = 8192):
|
112 |
+
# copy from https://github.com/tqdm/tqdm/blob/master/examples/tqdm_requests.py
|
113 |
+
file_size = int(requests.head(url).headers["Content-Length"])
|
114 |
+
response = requests.get(url, stream=True)
|
115 |
+
with tqdm(total=file_size, unit='B', unit_scale=True, unit_divisor=1024, miniters=1,
|
116 |
+
desc="model download") as pbar:
|
117 |
+
|
118 |
+
with open(save_path, 'wb') as f:
|
119 |
+
for chunk in response.iter_content(chunk_size=chunk_size):
|
120 |
+
if chunk:
|
121 |
+
f.write(chunk)
|
122 |
+
pbar.update(chunk_size)
|
123 |
+
cls.setup_model(save_path)
|
app/init_jptalk.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import pyopenjtalk
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
pyopenjtalk. _lazy_init()
|
9 |
+
# pyopenjtalk._extract_dic()
|
app/main.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from multiprocessing import Process
|
2 |
+
import numpy as np
|
3 |
+
from .util import find_path_by_suffix, time_it
|
4 |
+
from loguru import logger
|
5 |
+
from .util import intersperse
|
6 |
+
from .config import Config
|
7 |
+
from .text import text_to_sequence
|
8 |
+
import gradio as gr
|
9 |
+
# import sys
|
10 |
+
# sys.path.append('..')
|
11 |
+
|
12 |
+
|
13 |
+
def text_to_seq(text: str):
|
14 |
+
text = Config.pattern.sub(' ', text).strip()
|
15 |
+
text_norm = text_to_sequence(
|
16 |
+
text, Config.hps.symbols, Config.hps.data.text_cleaners)
|
17 |
+
if Config.hps.data.add_blank:
|
18 |
+
text_norm = intersperse(text_norm, 0)
|
19 |
+
return text_norm
|
20 |
+
|
21 |
+
|
22 |
+
@time_it
|
23 |
+
@logger.catch
|
24 |
+
def tts_fn(text, speaker_id, speed=1.0):
|
25 |
+
|
26 |
+
if len(text) > 300:
|
27 |
+
return "Error: Text is too long, please down it to 300 characters", None
|
28 |
+
|
29 |
+
if not Config.model_is_ok:
|
30 |
+
return "Error: model not loaded, please wait for a while or look the log", None
|
31 |
+
|
32 |
+
seq = text_to_seq(text)
|
33 |
+
x = np.array([seq], dtype=np.int64)
|
34 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
35 |
+
sid = np.array([speaker_id], dtype=np.int64)
|
36 |
+
speed = 1/speed
|
37 |
+
scales = np.array([0.667, speed, 0.8], dtype=np.float32)
|
38 |
+
scales.resize(1, 3)
|
39 |
+
ort_inputs = {
|
40 |
+
'input': x,
|
41 |
+
'input_lengths': x_len,
|
42 |
+
'scales': scales,
|
43 |
+
'sid': sid
|
44 |
+
}
|
45 |
+
audio = np.squeeze(Config.ort_sess.run(None, ort_inputs))
|
46 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
47 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
48 |
+
|
49 |
+
return "success", (Config.hps.data.sampling_rate, audio.astype(np.int16))
|
50 |
+
|
51 |
+
|
52 |
+
def set_gradio_view():
|
53 |
+
app = gr.Blocks()
|
54 |
+
|
55 |
+
with app:
|
56 |
+
gr.Markdown(
|
57 |
+
"a demo of web service of vits, thanks to @CjangCjengh, copy from [link](https://huggingface.co/spaces/skytnt/moe-japanese-tts)")
|
58 |
+
with gr.Tabs():
|
59 |
+
with gr.TabItem("TTS"):
|
60 |
+
with gr.Column():
|
61 |
+
tts_input1 = gr.TextArea(
|
62 |
+
label="TTS_text", value="わたしの趣味はたくさんあります。でも、一番好きな事は写真をとることです。")
|
63 |
+
tts_input2 = gr.Dropdown(
|
64 |
+
label="Speaker", choices=Config.speaker_choices, type="index", value=Config.speaker_choices[0])
|
65 |
+
tts_input3 = gr.Slider(
|
66 |
+
label="Speed", value=1, minimum=0.2, maximum=3, step=0.1)
|
67 |
+
|
68 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
69 |
+
tts_output1 = gr.Textbox(label="Output Message")
|
70 |
+
tts_output2 = gr.Audio(label="Output Audio")
|
71 |
+
|
72 |
+
inputs = [
|
73 |
+
tts_input1, tts_input2, tts_input3
|
74 |
+
]
|
75 |
+
outputs = [
|
76 |
+
tts_output1, tts_output2]
|
77 |
+
|
78 |
+
tts_submit.click(tts_fn, inputs=inputs, outputs=outputs)
|
79 |
+
|
80 |
+
app.queue(concurrency_count=3)
|
81 |
+
gr.close_all()
|
82 |
+
app.launch(server_name='0.0.0.0', show_api=False,
|
83 |
+
share=False, server_port=7860)
|
84 |
+
|
85 |
+
|
86 |
+
def main():
|
87 |
+
# p = Process(target=Config.init)
|
88 |
+
# p.start()
|
89 |
+
Config.init()
|
90 |
+
set_gradio_view()
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == '__main__':
|
94 |
+
main()
|
app/text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
app/text/__init__.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from loguru import logger
|
3 |
+
# from app.config import Config
|
4 |
+
from . import cleaners
|
5 |
+
|
6 |
+
_symbol_to_id = None
|
7 |
+
|
8 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
9 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
10 |
+
Args:
|
11 |
+
text: string to convert to a sequence
|
12 |
+
symbols: list of symbols in the text
|
13 |
+
cleaner_names: names of the cleaner functions to run the text through
|
14 |
+
Returns:
|
15 |
+
List of integers corresponding to the symbols in the text
|
16 |
+
|
17 |
+
|
18 |
+
ATTENTION: unable to access Config variabel , don't know why
|
19 |
+
'''
|
20 |
+
|
21 |
+
global _symbol_to_id
|
22 |
+
|
23 |
+
|
24 |
+
if not _symbol_to_id:
|
25 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
clean_text = _clean_text(text, cleaner_names)
|
30 |
+
|
31 |
+
sequence = [
|
32 |
+
_symbol_to_id[symbol] for symbol in clean_text if symbol in _symbol_to_id.keys()
|
33 |
+
]
|
34 |
+
|
35 |
+
# for symbol in clean_text:
|
36 |
+
# if symbol not in _symbol_to_id.keys():
|
37 |
+
# continue
|
38 |
+
# symbol_id = _symbol_to_id[symbol]
|
39 |
+
# sequence += [symbol_id]
|
40 |
+
return sequence
|
41 |
+
|
42 |
+
|
43 |
+
def _clean_text(text, cleaner_names):
|
44 |
+
for name in cleaner_names:
|
45 |
+
cleaner = getattr(cleaners, name)
|
46 |
+
if not cleaner:
|
47 |
+
raise Exception('Unknown cleaner: %s' % name)
|
48 |
+
text = cleaner(text)
|
49 |
+
return text
|
app/text/cleaners.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import pyopenjtalk
|
4 |
+
|
5 |
+
pyopenjtalk._lazy_init()
|
6 |
+
|
7 |
+
# Regular expression matching Japanese without punctuation marks:
|
8 |
+
_japanese_characters = re.compile(
|
9 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
10 |
+
|
11 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
12 |
+
_japanese_marks = re.compile(
|
13 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
14 |
+
|
15 |
+
|
16 |
+
def japanese_cleaners(text):
|
17 |
+
'''Pipeline for notating accent in Japanese text.'''
|
18 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
19 |
+
sentences = re.split(_japanese_marks, text)
|
20 |
+
marks = re.findall(_japanese_marks, text)
|
21 |
+
text = ''
|
22 |
+
for i, sentence in enumerate(sentences):
|
23 |
+
if re.match(_japanese_characters, sentence):
|
24 |
+
if text != '':
|
25 |
+
text += ' '
|
26 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
27 |
+
for n, label in enumerate(labels):
|
28 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
29 |
+
if phoneme not in ['sil', 'pau']:
|
30 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh', 'ʃ').replace('cl', 'Q')
|
31 |
+
else:
|
32 |
+
continue
|
33 |
+
n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
34 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
35 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
36 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
37 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
38 |
+
a2_next = -1
|
39 |
+
else:
|
40 |
+
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
41 |
+
# Accent phrase boundary
|
42 |
+
if a3 == 1 and a2_next == 1:
|
43 |
+
text += ' '
|
44 |
+
# Falling
|
45 |
+
elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras:
|
46 |
+
text += '↓'
|
47 |
+
# Rising
|
48 |
+
elif a2 == 1 and a2_next == 2:
|
49 |
+
text += '↑'
|
50 |
+
if i < len(marks):
|
51 |
+
text += unidecode(marks[i]).replace(' ', '')
|
52 |
+
if re.match('[A-Za-z]', text[-1]):
|
53 |
+
text += '.'
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
def japanese_cleaners2(text):
|
58 |
+
return japanese_cleaners(text).replace('ts','ʦ').replace('...','…')
|
app/text/symbols.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Defines the set of symbols used in text input to the model.
|
3 |
+
'''
|
4 |
+
|
5 |
+
'''# japanese_cleaners
|
6 |
+
_pad = '_'
|
7 |
+
_punctuation = ',.!?-'
|
8 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
9 |
+
'''
|
10 |
+
# jp_cleaners
|
11 |
+
_pad = '_'
|
12 |
+
_punctuation = ',.!?-'
|
13 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# japanese_cleaners2
|
18 |
+
# _pad = '_'
|
19 |
+
# _punctuation = ',.!?-~…'
|
20 |
+
# _letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
|
21 |
+
|
22 |
+
|
23 |
+
'''# korean_cleaners
|
24 |
+
_pad = '_'
|
25 |
+
_punctuation = ',.!?…~'
|
26 |
+
_letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
|
27 |
+
'''
|
28 |
+
|
29 |
+
'''# chinese_cleaners
|
30 |
+
_pad = '_'
|
31 |
+
_punctuation = ',。!?—…'
|
32 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
33 |
+
'''
|
34 |
+
|
35 |
+
# Export all symbols:
|
36 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
37 |
+
|
38 |
+
# Special symbol ids
|
39 |
+
SPACE_ID = symbols.index(" ")
|
app/util.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import json
|
3 |
+
import pathlib
|
4 |
+
# import tqdm
|
5 |
+
|
6 |
+
from typing import Optional
|
7 |
+
import os
|
8 |
+
import threading
|
9 |
+
|
10 |
+
from loguru import logger
|
11 |
+
# from app.common import HParams
|
12 |
+
# from __ini import HParams
|
13 |
+
from pathlib import Path
|
14 |
+
import requests
|
15 |
+
|
16 |
+
from app import HParams
|
17 |
+
|
18 |
+
|
19 |
+
def find_path_by_suffix(dir_path: Path, suffix: Path):
|
20 |
+
assert dir_path.is_dir()
|
21 |
+
|
22 |
+
for path in dir_path.glob(f"*.{suffix}"):
|
23 |
+
return path
|
24 |
+
|
25 |
+
return None
|
26 |
+
|
27 |
+
|
28 |
+
def get_hparams_from_file(config_path):
|
29 |
+
with open(config_path, "r") as f:
|
30 |
+
data = f.read()
|
31 |
+
config = json.loads(data)
|
32 |
+
|
33 |
+
hparams = HParams(**config)
|
34 |
+
return hparams
|
35 |
+
|
36 |
+
|
37 |
+
def intersperse(lst, item):
|
38 |
+
result = [item] * (len(lst) * 2 + 1)
|
39 |
+
result[1::2] = lst
|
40 |
+
return result
|
41 |
+
|
42 |
+
|
43 |
+
def time_it(func: callable):
|
44 |
+
import time
|
45 |
+
|
46 |
+
def wrapper(*args, **kwargs):
|
47 |
+
# start = time.time()
|
48 |
+
start = time.perf_counter()
|
49 |
+
res = func(*args, **kwargs)
|
50 |
+
# end = time.time()
|
51 |
+
end = time.perf_counter()
|
52 |
+
# print(f"func {func.__name__} cost {end-start} seconds")
|
53 |
+
logger.info(f"func {func.__name__} cost {end-start} seconds")
|
54 |
+
return res
|
55 |
+
return wrapper
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
# def download_defaults(model_path: pathlib.Path, config_path: pathlib.Path):
|
62 |
+
|
63 |
+
# config = requests.get(config_url, timeout=10).content
|
64 |
+
# with open(str(config_path), 'wb') as f:
|
65 |
+
# f.write(config)
|
66 |
+
|
67 |
+
# t = threading.Thread(target=pdownload, args=(model_url, str(model_path)))
|
68 |
+
# t.start()
|
69 |
+
|
70 |
+
|
71 |
+
def get_paths(dir_path: Path):
|
72 |
+
|
73 |
+
model_path: Path = find_path_by_suffix(dir_path, "onnx")
|
74 |
+
config_path: Path = find_path_by_suffix(dir_path, "json")
|
75 |
+
# if not model_path or not config_path:
|
76 |
+
# model_path = dir_path / "model.onnx"
|
77 |
+
# config_path = dir_path / "config.json"
|
78 |
+
# logger.warning(
|
79 |
+
# "unable to find model or config, try to download default model and config"
|
80 |
+
# )
|
81 |
+
# download_defaults(model_path, config_path)
|
82 |
+
|
83 |
+
# model_path = str(model_path)
|
84 |
+
# config_path = str(config_path)
|
85 |
+
# logger.info(f"model path: {model_path} config path: {config_path}")
|
86 |
+
return model_path, config_path
|
build.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
docker image rm ccdesue/vits_demo:onnx -f --no-prune
|
2 |
+
docker build -t ccdesue/vits_demo:onnx .
|
3 |
+
|
4 |
+
function run()
|
5 |
+
{
|
6 |
+
export name=vits_onnx
|
7 |
+
docker stop $name
|
8 |
+
docker rm $name
|
9 |
+
docker run -d \
|
10 |
+
--name $name \
|
11 |
+
-p 7860:7860 \
|
12 |
+
ccdesue/vits_demo:onnx
|
13 |
+
}
|
14 |
+
|
15 |
+
# docker run --rm -it -p 7860:7860/tcp ccdesue/vits_demo:onnx bash
|
16 |
+
|
17 |
+
function push(){
|
18 |
+
|
19 |
+
docker push ccdesue/vits_demo:onnx
|
20 |
+
}
|
export/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
export/README.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
> Thanks a lot to [wetts](https://github.com/wenet-e2e/wetts)
|
2 |
+
> 欢迎 pr
|
3 |
+
## 修改说明
|
4 |
+
1. 将原仓库的配置文件修改成[@CjangCjengh](https://github.com/CjangCjengh)用的部署文件 详细参考config.json
|
5 |
+
2. 为导出代码添加注释, tensor修改为np.array
|
6 |
+
3. 有问题请认真阅读源码
|
7 |
+
|
8 |
+
|
export/export.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
function get_data(){
|
3 |
+
mkdir -p model
|
4 |
+
cd model
|
5 |
+
model_url='https://api.onedrive.com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBdG53cTVRejJnLTJiTzdqanlEQXNyWDV4bDA/root/content'
|
6 |
+
config_url='https://api.onedrive.com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBdG53cTVRejJnLTJhNEJ3enhhUHpqNE5EZWc/root/content'
|
7 |
+
|
8 |
+
wget -O model.pth $model_url
|
9 |
+
wget -O config.json $config_url
|
10 |
+
cd ..
|
11 |
+
}
|
12 |
+
|
13 |
+
|
14 |
+
# mkdir -p model
|
15 |
+
|
16 |
+
python vits/export_onnx.py --checkpoint model/model.pth --cfg model/config.json \
|
17 |
+
--onnx_model model/model.onnx
|
18 |
+
|
19 |
+
# https://api.onedrive.com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBb1E3R21YN3hRWkpnYjQtT1VocVdjUFc4VWM5bVE/root/content
|
export/infer.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
python vits/inference_onnx.py --onnx_model model/model.onnx \
|
2 |
+
--cfg model/config.json --test_file test.txt
|
export/requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
flake8==3.8.2
|
3 |
+
flake8-bugbear
|
4 |
+
flake8-comprehensions
|
5 |
+
flake8-executable
|
6 |
+
flake8-pyi==20.5.0
|
7 |
+
# mccabe
|
8 |
+
pycodestyle==2.6.0
|
9 |
+
pyflakes==2.2.0
|
10 |
+
# tensorboard
|
11 |
+
sklearn
|
12 |
+
WeTextProcessing
|
13 |
+
monotonic_align
|
14 |
+
matplotlib
|
15 |
+
librosa
|
16 |
+
scipy
|
17 |
+
transformers
|
18 |
+
# Cython
|
19 |
+
pyopenjtalk
|
20 |
+
unidecode
|
21 |
+
# pip3 install torch --extra-index-url https://download.pytorch.org/whl/cpu
|
export/setup.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# update pip
|
2 |
+
|
3 |
+
function setup_py(){
|
4 |
+
conda create -n dl python=3.9 -y
|
5 |
+
conda init bash
|
6 |
+
bash
|
7 |
+
}
|
8 |
+
|
9 |
+
conda activate dl
|
10 |
+
export DEBIAN_FRONTEND=noninteractive && \
|
11 |
+
sudo apt-get update && \
|
12 |
+
sudo apt-get install cmake build-essential -y --no-install-recommends
|
13 |
+
|
14 |
+
|
15 |
+
pip install --upgrade pip
|
16 |
+
pip3 install torch --extra-index-url https://download.pytorch.org/whl/cpu
|
17 |
+
pip3 install onnxruntime Cython
|
18 |
+
pip install -r requirements.txt
|
export/test.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
test.wav|わたしの趣味はたくさんあります。でも、一番好きな事は写真をとることです。
|
export/vits/attentions.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
from modules import LayerNorm
|
9 |
+
|
10 |
+
|
11 |
+
class Encoder(nn.Module):
|
12 |
+
def __init__(self,
|
13 |
+
hidden_channels,
|
14 |
+
filter_channels,
|
15 |
+
n_heads,
|
16 |
+
n_layers,
|
17 |
+
kernel_size=1,
|
18 |
+
p_dropout=0.,
|
19 |
+
window_size=4,
|
20 |
+
**kwargs):
|
21 |
+
super().__init__()
|
22 |
+
self.hidden_channels = hidden_channels
|
23 |
+
self.filter_channels = filter_channels
|
24 |
+
self.n_heads = n_heads
|
25 |
+
self.n_layers = n_layers
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.window_size = window_size
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.attn_layers = nn.ModuleList()
|
32 |
+
self.norm_layers_1 = nn.ModuleList()
|
33 |
+
self.ffn_layers = nn.ModuleList()
|
34 |
+
self.norm_layers_2 = nn.ModuleList()
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
self.attn_layers.append(
|
37 |
+
MultiHeadAttention(hidden_channels,
|
38 |
+
hidden_channels,
|
39 |
+
n_heads,
|
40 |
+
p_dropout=p_dropout,
|
41 |
+
window_size=window_size))
|
42 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
43 |
+
self.ffn_layers.append(
|
44 |
+
FFN(hidden_channels,
|
45 |
+
hidden_channels,
|
46 |
+
filter_channels,
|
47 |
+
kernel_size,
|
48 |
+
p_dropout=p_dropout))
|
49 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
50 |
+
|
51 |
+
def forward(self, x, x_mask):
|
52 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
53 |
+
x = x * x_mask
|
54 |
+
for i in range(self.n_layers):
|
55 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
56 |
+
y = self.drop(y)
|
57 |
+
x = self.norm_layers_1[i](x + y)
|
58 |
+
|
59 |
+
y = self.ffn_layers[i](x, x_mask)
|
60 |
+
y = self.drop(y)
|
61 |
+
x = self.norm_layers_2[i](x + y)
|
62 |
+
x = x * x_mask
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class Decoder(nn.Module):
|
67 |
+
def __init__(self,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size=1,
|
73 |
+
p_dropout=0.,
|
74 |
+
proximal_bias=False,
|
75 |
+
proximal_init=True,
|
76 |
+
**kwargs):
|
77 |
+
super().__init__()
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.proximal_bias = proximal_bias
|
85 |
+
self.proximal_init = proximal_init
|
86 |
+
|
87 |
+
self.drop = nn.Dropout(p_dropout)
|
88 |
+
self.self_attn_layers = nn.ModuleList()
|
89 |
+
self.norm_layers_0 = nn.ModuleList()
|
90 |
+
self.encdec_attn_layers = nn.ModuleList()
|
91 |
+
self.norm_layers_1 = nn.ModuleList()
|
92 |
+
self.ffn_layers = nn.ModuleList()
|
93 |
+
self.norm_layers_2 = nn.ModuleList()
|
94 |
+
for i in range(self.n_layers):
|
95 |
+
self.self_attn_layers.append(
|
96 |
+
MultiHeadAttention(hidden_channels,
|
97 |
+
hidden_channels,
|
98 |
+
n_heads,
|
99 |
+
p_dropout=p_dropout,
|
100 |
+
proximal_bias=proximal_bias,
|
101 |
+
proximal_init=proximal_init))
|
102 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
103 |
+
self.encdec_attn_layers.append(
|
104 |
+
MultiHeadAttention(hidden_channels,
|
105 |
+
hidden_channels,
|
106 |
+
n_heads,
|
107 |
+
p_dropout=p_dropout))
|
108 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
109 |
+
self.ffn_layers.append(
|
110 |
+
FFN(hidden_channels,
|
111 |
+
hidden_channels,
|
112 |
+
filter_channels,
|
113 |
+
kernel_size,
|
114 |
+
p_dropout=p_dropout,
|
115 |
+
causal=True))
|
116 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, h, h_mask):
|
119 |
+
"""
|
120 |
+
x: decoder input
|
121 |
+
h: encoder output
|
122 |
+
"""
|
123 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
124 |
+
device=x.device, dtype=x.dtype)
|
125 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
126 |
+
x = x * x_mask
|
127 |
+
for i in range(self.n_layers):
|
128 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
129 |
+
y = self.drop(y)
|
130 |
+
x = self.norm_layers_0[i](x + y)
|
131 |
+
|
132 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_1[i](x + y)
|
135 |
+
|
136 |
+
y = self.ffn_layers[i](x, x_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_2[i](x + y)
|
139 |
+
x = x * x_mask
|
140 |
+
return x
|
141 |
+
|
142 |
+
|
143 |
+
class MultiHeadAttention(nn.Module):
|
144 |
+
def __init__(self,
|
145 |
+
channels,
|
146 |
+
out_channels,
|
147 |
+
n_heads,
|
148 |
+
p_dropout=0.,
|
149 |
+
window_size=None,
|
150 |
+
heads_share=True,
|
151 |
+
block_length=None,
|
152 |
+
proximal_bias=False,
|
153 |
+
proximal_init=False):
|
154 |
+
super().__init__()
|
155 |
+
assert channels % n_heads == 0
|
156 |
+
|
157 |
+
self.channels = channels
|
158 |
+
self.out_channels = out_channels
|
159 |
+
self.n_heads = n_heads
|
160 |
+
self.p_dropout = p_dropout
|
161 |
+
self.window_size = window_size
|
162 |
+
self.heads_share = heads_share
|
163 |
+
self.block_length = block_length
|
164 |
+
self.proximal_bias = proximal_bias
|
165 |
+
self.proximal_init = proximal_init
|
166 |
+
self.attn = None
|
167 |
+
|
168 |
+
self.k_channels = channels // n_heads
|
169 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
170 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
171 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
172 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
173 |
+
self.drop = nn.Dropout(p_dropout)
|
174 |
+
|
175 |
+
if window_size is not None:
|
176 |
+
n_heads_rel = 1 if heads_share else n_heads
|
177 |
+
rel_stddev = self.k_channels**-0.5
|
178 |
+
self.emb_rel_k = nn.Parameter(
|
179 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
180 |
+
* rel_stddev)
|
181 |
+
self.emb_rel_v = nn.Parameter(
|
182 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
183 |
+
* rel_stddev)
|
184 |
+
|
185 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
186 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
187 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
188 |
+
if proximal_init:
|
189 |
+
with torch.no_grad():
|
190 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
191 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
192 |
+
|
193 |
+
def forward(self, x, c, attn_mask=None):
|
194 |
+
q = self.conv_q(x)
|
195 |
+
k = self.conv_k(c)
|
196 |
+
v = self.conv_v(c)
|
197 |
+
|
198 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
199 |
+
|
200 |
+
x = self.conv_o(x)
|
201 |
+
return x
|
202 |
+
|
203 |
+
def attention(self, query, key, value, mask=None):
|
204 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
205 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
206 |
+
query = query.view(b, self.n_heads, self.k_channels,
|
207 |
+
t_t).transpose(2, 3)
|
208 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
209 |
+
value = value.view(b, self.n_heads, self.k_channels,
|
210 |
+
t_s).transpose(2, 3)
|
211 |
+
|
212 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels),
|
213 |
+
key.transpose(-2, -1))
|
214 |
+
if self.window_size is not None:
|
215 |
+
msg = "Relative attention is only available for self-attention."
|
216 |
+
assert t_s == t_t, msg
|
217 |
+
key_relative_embeddings = self._get_relative_embeddings(
|
218 |
+
self.emb_rel_k, t_s)
|
219 |
+
rel_logits = self._matmul_with_relative_keys(
|
220 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings)
|
221 |
+
scores_local = self._relative_position_to_absolute_position(
|
222 |
+
rel_logits)
|
223 |
+
scores = scores + scores_local
|
224 |
+
if self.proximal_bias:
|
225 |
+
msg = "Proximal bias is only available for self-attention."
|
226 |
+
assert t_s == t_t, msg
|
227 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
228 |
+
device=scores.device, dtype=scores.dtype)
|
229 |
+
if mask is not None:
|
230 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
231 |
+
if self.block_length is not None:
|
232 |
+
msg = "Local attention is only available for self-attention."
|
233 |
+
assert t_s == t_t, msg
|
234 |
+
block_mask = torch.ones_like(scores).triu(
|
235 |
+
-self.block_length).tril(self.block_length)
|
236 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
237 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
238 |
+
p_attn = self.drop(p_attn)
|
239 |
+
output = torch.matmul(p_attn, value)
|
240 |
+
if self.window_size is not None:
|
241 |
+
relative_weights = self._absolute_position_to_relative_position(
|
242 |
+
p_attn)
|
243 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
244 |
+
self.emb_rel_v, t_s)
|
245 |
+
output = output + self._matmul_with_relative_values(
|
246 |
+
relative_weights, value_relative_embeddings)
|
247 |
+
output = output.transpose(2, 3).contiguous().view(
|
248 |
+
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
249 |
+
return output, p_attn
|
250 |
+
|
251 |
+
def _matmul_with_relative_values(self, x, y):
|
252 |
+
"""
|
253 |
+
x: [b, h, l, m]
|
254 |
+
y: [h or 1, m, d]
|
255 |
+
ret: [b, h, l, d]
|
256 |
+
"""
|
257 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
258 |
+
return ret
|
259 |
+
|
260 |
+
def _matmul_with_relative_keys(self, x, y):
|
261 |
+
"""
|
262 |
+
x: [b, h, l, d]
|
263 |
+
y: [h or 1, m, d]
|
264 |
+
ret: [b, h, l, m]
|
265 |
+
"""
|
266 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
267 |
+
return ret
|
268 |
+
|
269 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
270 |
+
max_relative_position = 2 * self.window_size + 1
|
271 |
+
# Pad first before slice to avoid using cond ops.
|
272 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
273 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
274 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
275 |
+
if pad_length > 0:
|
276 |
+
padded_relative_embeddings = F.pad(
|
277 |
+
relative_embeddings,
|
278 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length],
|
279 |
+
[0, 0]]))
|
280 |
+
else:
|
281 |
+
padded_relative_embeddings = relative_embeddings
|
282 |
+
used_relative_embeddings = padded_relative_embeddings[:,
|
283 |
+
slice_start_position:
|
284 |
+
slice_end_position]
|
285 |
+
return used_relative_embeddings
|
286 |
+
|
287 |
+
def _relative_position_to_absolute_position(self, x):
|
288 |
+
"""
|
289 |
+
x: [b, h, l, 2*l-1]
|
290 |
+
ret: [b, h, l, l]
|
291 |
+
"""
|
292 |
+
batch, heads, length, _ = x.size()
|
293 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
294 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
295 |
+
1]]))
|
296 |
+
|
297 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
298 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
299 |
+
x_flat = F.pad(
|
300 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0,
|
301 |
+
length - 1]]))
|
302 |
+
|
303 |
+
# Reshape and slice out the padded elements.
|
304 |
+
x_final = x_flat.view([batch, heads, length + 1,
|
305 |
+
2 * length - 1])[:, :, :length, length - 1:]
|
306 |
+
return x_final
|
307 |
+
|
308 |
+
def _absolute_position_to_relative_position(self, x):
|
309 |
+
"""
|
310 |
+
x: [b, h, l, l]
|
311 |
+
ret: [b, h, l, 2*l-1]
|
312 |
+
"""
|
313 |
+
batch, heads, length, _ = x.size()
|
314 |
+
# padd along column
|
315 |
+
x = F.pad(
|
316 |
+
x,
|
317 |
+
commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
318 |
+
length - 1]]))
|
319 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
320 |
+
# add 0's in the beginning that will skew the elements after reshape
|
321 |
+
x_flat = F.pad(
|
322 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
323 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
324 |
+
return x_final
|
325 |
+
|
326 |
+
def _attention_bias_proximal(self, length):
|
327 |
+
"""Bias for self-attention to encourage attention to close positions.
|
328 |
+
Args:
|
329 |
+
length: an integer scalar.
|
330 |
+
Returns:
|
331 |
+
a Tensor with shape [1, 1, length, length]
|
332 |
+
"""
|
333 |
+
r = torch.arange(length, dtype=torch.float32)
|
334 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
335 |
+
return torch.unsqueeze(
|
336 |
+
torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
337 |
+
|
338 |
+
|
339 |
+
class FFN(nn.Module):
|
340 |
+
def __init__(self,
|
341 |
+
in_channels,
|
342 |
+
out_channels,
|
343 |
+
filter_channels,
|
344 |
+
kernel_size,
|
345 |
+
p_dropout=0.,
|
346 |
+
activation=None,
|
347 |
+
causal=False):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.out_channels = out_channels
|
351 |
+
self.filter_channels = filter_channels
|
352 |
+
self.kernel_size = kernel_size
|
353 |
+
self.p_dropout = p_dropout
|
354 |
+
self.activation = activation
|
355 |
+
self.causal = causal
|
356 |
+
|
357 |
+
if causal:
|
358 |
+
self.padding = self._causal_padding
|
359 |
+
else:
|
360 |
+
self.padding = self._same_padding
|
361 |
+
|
362 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
363 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
364 |
+
self.drop = nn.Dropout(p_dropout)
|
365 |
+
|
366 |
+
def forward(self, x, x_mask):
|
367 |
+
x = self.conv_1(self.padding(x * x_mask))
|
368 |
+
if self.activation == "gelu":
|
369 |
+
x = x * torch.sigmoid(1.702 * x)
|
370 |
+
else:
|
371 |
+
x = torch.relu(x)
|
372 |
+
x = self.drop(x)
|
373 |
+
x = self.conv_2(self.padding(x * x_mask))
|
374 |
+
return x * x_mask
|
375 |
+
|
376 |
+
def _causal_padding(self, x):
|
377 |
+
if self.kernel_size == 1:
|
378 |
+
return x
|
379 |
+
pad_l = self.kernel_size - 1
|
380 |
+
pad_r = 0
|
381 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
382 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
383 |
+
return x
|
384 |
+
|
385 |
+
def _same_padding(self, x):
|
386 |
+
if self.kernel_size == 1:
|
387 |
+
return x
|
388 |
+
pad_l = (self.kernel_size - 1) // 2
|
389 |
+
pad_r = self.kernel_size // 2
|
390 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
391 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
392 |
+
return x
|
export/vits/commons.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def init_weights(m, mean=0.0, std=0.01):
|
8 |
+
classname = m.__class__.__name__
|
9 |
+
if classname.find("Conv") != -1:
|
10 |
+
m.weight.data.normal_(mean, std)
|
11 |
+
|
12 |
+
|
13 |
+
def get_padding(kernel_size, dilation=1):
|
14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
15 |
+
|
16 |
+
|
17 |
+
def convert_pad_shape(pad_shape):
|
18 |
+
pad_shape = [item for sublist in reversed(pad_shape) for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += 0.5 * (torch.exp(2. * logs_p) +
|
32 |
+
((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
33 |
+
return kl
|
34 |
+
|
35 |
+
|
36 |
+
def rand_gumbel(shape):
|
37 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
38 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
39 |
+
return -torch.log(-torch.log(uniform_samples))
|
40 |
+
|
41 |
+
|
42 |
+
def rand_gumbel_like(x):
|
43 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
44 |
+
return g
|
45 |
+
|
46 |
+
|
47 |
+
def slice_segments(x, ids_str, segment_size=4):
|
48 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
49 |
+
for i in range(x.size(0)):
|
50 |
+
idx_str = ids_str[i]
|
51 |
+
idx_end = idx_str + segment_size
|
52 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
53 |
+
return ret
|
54 |
+
|
55 |
+
|
56 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
57 |
+
b, d, t = x.size()
|
58 |
+
if x_lengths is None:
|
59 |
+
x_lengths = t
|
60 |
+
ids_str_max = x_lengths - segment_size + 1
|
61 |
+
ids_str = (torch.rand([b]).to(device=x.device) *
|
62 |
+
ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length,
|
68 |
+
channels,
|
69 |
+
min_timescale=1.0,
|
70 |
+
max_timescale=1.0e4):
|
71 |
+
position = torch.arange(length, dtype=torch.float)
|
72 |
+
num_timescales = channels // 2
|
73 |
+
log_timescale_increment = (
|
74 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
75 |
+
(num_timescales - 1))
|
76 |
+
inv_timescales = min_timescale * torch.exp(
|
77 |
+
torch.arange(num_timescales, dtype=torch.float) *
|
78 |
+
-log_timescale_increment)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
89 |
+
max_timescale)
|
90 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
91 |
+
|
92 |
+
|
93 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
94 |
+
b, channels, length = x.size()
|
95 |
+
signal = get_timing_signal_1d(length, channels, min_timescale,
|
96 |
+
max_timescale)
|
97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
98 |
+
|
99 |
+
|
100 |
+
def subsequent_mask(length):
|
101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
102 |
+
return mask
|
103 |
+
|
104 |
+
|
105 |
+
@torch.jit.script
|
106 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
107 |
+
n_channels_int = n_channels[0]
|
108 |
+
in_act = input_a + input_b
|
109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
111 |
+
acts = t_act * s_act
|
112 |
+
return acts
|
113 |
+
|
114 |
+
|
115 |
+
def shift_1d(x):
|
116 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
def sequence_mask(length, max_length=None):
|
121 |
+
if max_length is None:
|
122 |
+
max_length = length.max()
|
123 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
124 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
125 |
+
|
126 |
+
|
127 |
+
def generate_path(duration, mask):
|
128 |
+
"""
|
129 |
+
duration: [b, 1, t_x]
|
130 |
+
mask: [b, 1, t_y, t_x]
|
131 |
+
"""
|
132 |
+
device = duration.device
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]
|
141 |
+
]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item()**norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm**(1. / norm_type)
|
161 |
+
return total_norm
|
export/vits/data_utils.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch
|
10 |
+
from utils import load_filepaths_and_text
|
11 |
+
|
12 |
+
|
13 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
14 |
+
"""
|
15 |
+
1) loads audio, speaker_id, text pairs
|
16 |
+
2) normalizes text and converts them to sequences of integers
|
17 |
+
3) computes spectrograms from audio files.
|
18 |
+
"""
|
19 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
20 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
21 |
+
# self.text_cleaners = hparams.text_cleaners
|
22 |
+
self.max_wav_value = hparams.max_wav_value
|
23 |
+
self.sampling_rate = hparams.sampling_rate
|
24 |
+
self.filter_length = hparams.filter_length
|
25 |
+
self.hop_length = hparams.hop_length
|
26 |
+
self.win_length = hparams.win_length
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.src_sampling_rate = getattr(hparams, "src_sampling_rate",
|
29 |
+
self.sampling_rate)
|
30 |
+
|
31 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
32 |
+
|
33 |
+
self.add_blank = hparams.add_blank
|
34 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
35 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
36 |
+
|
37 |
+
phone_file = getattr(hparams, "phone_table", None)
|
38 |
+
self.phone_dict = None
|
39 |
+
if phone_file is not None:
|
40 |
+
self.phone_dict = {}
|
41 |
+
with open(phone_file) as fin:
|
42 |
+
for line in fin:
|
43 |
+
arr = line.strip().split()
|
44 |
+
self.phone_dict[arr[0]] = int(arr[1])
|
45 |
+
|
46 |
+
speaker_file = getattr(hparams, "speaker_table", None)
|
47 |
+
self.speaker_dict = None
|
48 |
+
if speaker_file is not None:
|
49 |
+
self.speaker_dict = {}
|
50 |
+
with open(speaker_file) as fin:
|
51 |
+
for line in fin:
|
52 |
+
arr = line.strip().split()
|
53 |
+
self.speaker_dict[arr[0]] = int(arr[1])
|
54 |
+
|
55 |
+
random.seed(1234)
|
56 |
+
random.shuffle(self.audiopaths_sid_text)
|
57 |
+
self._filter()
|
58 |
+
|
59 |
+
def _filter(self):
|
60 |
+
"""
|
61 |
+
Filter text & store spec lengths
|
62 |
+
"""
|
63 |
+
# Store spectrogram lengths for Bucketing
|
64 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
65 |
+
# spec_length = wav_length // hop_length
|
66 |
+
|
67 |
+
audiopaths_sid_text_new = []
|
68 |
+
lengths = []
|
69 |
+
for item in self.audiopaths_sid_text:
|
70 |
+
audiopath = item[0]
|
71 |
+
# filename|text or filename|speaker|text
|
72 |
+
text = item[1] if len(item) == 2 else item[2]
|
73 |
+
if self.min_text_len <= len(text) and len(
|
74 |
+
text) <= self.max_text_len:
|
75 |
+
audiopaths_sid_text_new.append(item)
|
76 |
+
lengths.append(
|
77 |
+
int(
|
78 |
+
os.path.getsize(audiopath) * self.sampling_rate /
|
79 |
+
self.src_sampling_rate) // (2 * self.hop_length))
|
80 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
81 |
+
self.lengths = lengths
|
82 |
+
|
83 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
84 |
+
audiopath = audiopath_sid_text[0]
|
85 |
+
if len(audiopath_sid_text) == 2: # filename|text
|
86 |
+
sid = 0
|
87 |
+
text = audiopath_sid_text[1]
|
88 |
+
else: # filename|speaker|text
|
89 |
+
sid = self.speaker_dict[audiopath_sid_text[1]]
|
90 |
+
text = audiopath_sid_text[2]
|
91 |
+
text = self.get_text(text)
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = self.get_sid(sid)
|
94 |
+
return (text, spec, wav, sid)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = torchaudio.load(filename, normalize=False)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
audio = audio.to(torch.float)
|
100 |
+
audio = torchaudio.transforms.Resample(sampling_rate,
|
101 |
+
self.sampling_rate)(audio)
|
102 |
+
audio = audio.to(torch.int16)
|
103 |
+
audio = audio[0] # Get the first channel
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec = spectrogram_torch(audio_norm,
|
107 |
+
self.filter_length,
|
108 |
+
self.sampling_rate,
|
109 |
+
self.hop_length,
|
110 |
+
self.win_length,
|
111 |
+
center=False)
|
112 |
+
spec = torch.squeeze(spec, 0)
|
113 |
+
return spec, audio_norm
|
114 |
+
|
115 |
+
def get_text(self, text):
|
116 |
+
text_norm = [self.phone_dict[phone] for phone in text.split()]
|
117 |
+
if self.add_blank:
|
118 |
+
text_norm = commons.intersperse(text_norm, 0)
|
119 |
+
text_norm = torch.LongTensor(text_norm)
|
120 |
+
return text_norm
|
121 |
+
|
122 |
+
def get_sid(self, sid):
|
123 |
+
sid = torch.LongTensor([int(sid)])
|
124 |
+
return sid
|
125 |
+
|
126 |
+
def __getitem__(self, index):
|
127 |
+
return self.get_audio_text_speaker_pair(
|
128 |
+
self.audiopaths_sid_text[index])
|
129 |
+
|
130 |
+
def __len__(self):
|
131 |
+
return len(self.audiopaths_sid_text)
|
132 |
+
|
133 |
+
|
134 |
+
class TextAudioSpeakerCollate():
|
135 |
+
""" Zero-pads model inputs and targets
|
136 |
+
"""
|
137 |
+
def __init__(self, return_ids=False):
|
138 |
+
self.return_ids = return_ids
|
139 |
+
|
140 |
+
def __call__(self, batch):
|
141 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
142 |
+
PARAMS
|
143 |
+
------
|
144 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
145 |
+
"""
|
146 |
+
# Right zero-pad all one-hot text sequences to max input length
|
147 |
+
_, ids_sorted_decreasing = torch.sort(torch.LongTensor(
|
148 |
+
[x[1].size(1) for x in batch]),
|
149 |
+
dim=0,
|
150 |
+
descending=True)
|
151 |
+
|
152 |
+
max_text_len = max([len(x[0]) for x in batch])
|
153 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
154 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
155 |
+
|
156 |
+
text_lengths = torch.LongTensor(len(batch))
|
157 |
+
spec_lengths = torch.LongTensor(len(batch))
|
158 |
+
wav_lengths = torch.LongTensor(len(batch))
|
159 |
+
sid = torch.LongTensor(len(batch))
|
160 |
+
|
161 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
162 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0),
|
163 |
+
max_spec_len)
|
164 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
165 |
+
text_padded.zero_()
|
166 |
+
spec_padded.zero_()
|
167 |
+
wav_padded.zero_()
|
168 |
+
for i in range(len(ids_sorted_decreasing)):
|
169 |
+
row = batch[ids_sorted_decreasing[i]]
|
170 |
+
|
171 |
+
text = row[0]
|
172 |
+
text_padded[i, :text.size(0)] = text
|
173 |
+
text_lengths[i] = text.size(0)
|
174 |
+
|
175 |
+
spec = row[1]
|
176 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
177 |
+
spec_lengths[i] = spec.size(1)
|
178 |
+
|
179 |
+
wav = row[2]
|
180 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
181 |
+
wav_lengths[i] = wav.size(1)
|
182 |
+
|
183 |
+
sid[i] = row[3]
|
184 |
+
|
185 |
+
if self.return_ids:
|
186 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
187 |
+
wav_padded, wav_lengths, sid, ids_sorted_decreasing)
|
188 |
+
return (text_padded, text_lengths, spec_padded, spec_lengths,
|
189 |
+
wav_padded, wav_lengths, sid)
|
190 |
+
|
191 |
+
|
192 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler
|
193 |
+
):
|
194 |
+
"""
|
195 |
+
Maintain similar input lengths in a batch.
|
196 |
+
Length groups are specified by boundaries.
|
197 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either
|
198 |
+
{x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
199 |
+
|
200 |
+
It removes samples which are not included in the boundaries.
|
201 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1
|
202 |
+
or length(x) > b3 are discarded.
|
203 |
+
"""
|
204 |
+
def __init__(self,
|
205 |
+
dataset,
|
206 |
+
batch_size,
|
207 |
+
boundaries,
|
208 |
+
num_replicas=None,
|
209 |
+
rank=None,
|
210 |
+
shuffle=True):
|
211 |
+
super().__init__(dataset,
|
212 |
+
num_replicas=num_replicas,
|
213 |
+
rank=rank,
|
214 |
+
shuffle=shuffle)
|
215 |
+
self.lengths = dataset.lengths
|
216 |
+
self.batch_size = batch_size
|
217 |
+
self.boundaries = boundaries
|
218 |
+
|
219 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
220 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
221 |
+
self.num_samples = self.total_size // self.num_replicas
|
222 |
+
|
223 |
+
def _create_buckets(self):
|
224 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
225 |
+
for i in range(len(self.lengths)):
|
226 |
+
length = self.lengths[i]
|
227 |
+
idx_bucket = self._bisect(length)
|
228 |
+
if idx_bucket != -1:
|
229 |
+
buckets[idx_bucket].append(i)
|
230 |
+
|
231 |
+
for i in range(len(buckets) - 1, 0, -1):
|
232 |
+
if len(buckets[i]) == 0:
|
233 |
+
buckets.pop(i)
|
234 |
+
self.boundaries.pop(i + 1)
|
235 |
+
|
236 |
+
num_samples_per_bucket = []
|
237 |
+
for i in range(len(buckets)):
|
238 |
+
len_bucket = len(buckets[i])
|
239 |
+
total_batch_size = self.num_replicas * self.batch_size
|
240 |
+
rem = (total_batch_size -
|
241 |
+
(len_bucket % total_batch_size)) % total_batch_size
|
242 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
243 |
+
return buckets, num_samples_per_bucket
|
244 |
+
|
245 |
+
def __iter__(self):
|
246 |
+
# deterministically shuffle based on epoch
|
247 |
+
g = torch.Generator()
|
248 |
+
g.manual_seed(self.epoch)
|
249 |
+
|
250 |
+
indices = []
|
251 |
+
if self.shuffle:
|
252 |
+
for bucket in self.buckets:
|
253 |
+
indices.append(
|
254 |
+
torch.randperm(len(bucket), generator=g).tolist())
|
255 |
+
else:
|
256 |
+
for bucket in self.buckets:
|
257 |
+
indices.append(list(range(len(bucket))))
|
258 |
+
|
259 |
+
batches = []
|
260 |
+
for i in range(len(self.buckets)):
|
261 |
+
bucket = self.buckets[i]
|
262 |
+
len_bucket = len(bucket)
|
263 |
+
ids_bucket = indices[i]
|
264 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
265 |
+
|
266 |
+
# add extra samples to make it evenly divisible
|
267 |
+
rem = num_samples_bucket - len_bucket
|
268 |
+
ids_bucket = ids_bucket + ids_bucket * (
|
269 |
+
rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
270 |
+
|
271 |
+
# subsample
|
272 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
273 |
+
|
274 |
+
# batching
|
275 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
276 |
+
batch = [
|
277 |
+
bucket[idx]
|
278 |
+
for idx in ids_bucket[j * self.batch_size:(j + 1) *
|
279 |
+
self.batch_size]
|
280 |
+
]
|
281 |
+
batches.append(batch)
|
282 |
+
|
283 |
+
if self.shuffle:
|
284 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
285 |
+
batches = [batches[i] for i in batch_ids]
|
286 |
+
self.batches = batches
|
287 |
+
|
288 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
289 |
+
return iter(self.batches)
|
290 |
+
|
291 |
+
def _bisect(self, x, lo=0, hi=None):
|
292 |
+
if hi is None:
|
293 |
+
hi = len(self.boundaries) - 1
|
294 |
+
|
295 |
+
if hi > lo:
|
296 |
+
mid = (hi + lo) // 2
|
297 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
298 |
+
return mid
|
299 |
+
elif x <= self.boundaries[mid]:
|
300 |
+
return self._bisect(x, lo, mid)
|
301 |
+
else:
|
302 |
+
return self._bisect(x, mid + 1, hi)
|
303 |
+
else:
|
304 |
+
return -1
|
305 |
+
|
306 |
+
def __len__(self):
|
307 |
+
return self.num_samples // self.batch_size
|
export/vits/export_onnx.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from models import SynthesizerTrn
|
23 |
+
import utils
|
24 |
+
|
25 |
+
try:
|
26 |
+
import onnxruntime as ort
|
27 |
+
except ImportError:
|
28 |
+
print('Please install onnxruntime!')
|
29 |
+
sys.exit(1)
|
30 |
+
|
31 |
+
|
32 |
+
def to_numpy(tensor):
|
33 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
34 |
+
else tensor.detach().numpy()
|
35 |
+
|
36 |
+
|
37 |
+
def get_args():
|
38 |
+
parser = argparse.ArgumentParser(description='export onnx model')
|
39 |
+
parser.add_argument('--checkpoint', required=True, help='checkpoint')
|
40 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
41 |
+
parser.add_argument('--onnx_model', required=True, help='onnx model name')
|
42 |
+
# parser.add_argument('--phone_table',
|
43 |
+
# required=True,
|
44 |
+
# help='input phone dict')
|
45 |
+
# parser.add_argument('--speaker_table', default=None, help='speaker table')
|
46 |
+
# parser.add_argument("--speaker_num", required=True,
|
47 |
+
# type=int, help="speaker num")
|
48 |
+
parser.add_argument(
|
49 |
+
'--providers',
|
50 |
+
required=False,
|
51 |
+
default='CPUExecutionProvider',
|
52 |
+
choices=['CUDAExecutionProvider', 'CPUExecutionProvider'],
|
53 |
+
help='the model to send request to')
|
54 |
+
args = parser.parse_args()
|
55 |
+
return args
|
56 |
+
|
57 |
+
|
58 |
+
def get_data_from_cfg(cfg_path: str):
|
59 |
+
assert os.path.isfile(cfg_path)
|
60 |
+
with open(cfg_path, 'r') as f:
|
61 |
+
data = json.load(f)
|
62 |
+
symbols = data["symbols"]
|
63 |
+
speaker_num = data["data"]["n_speakers"]
|
64 |
+
return len(symbols), speaker_num
|
65 |
+
|
66 |
+
|
67 |
+
def main():
|
68 |
+
args = get_args()
|
69 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
70 |
+
|
71 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
72 |
+
# with open(args.phone_table) as p_f:
|
73 |
+
# phone_num = len(p_f.readlines()) + 1
|
74 |
+
# num_speakers = 1
|
75 |
+
# if args.speaker_table is not None:
|
76 |
+
# num_speakers = len(open(args.speaker_table).readlines()) + 1
|
77 |
+
phone_num, num_speakers = get_data_from_cfg(args.cfg)
|
78 |
+
net_g = SynthesizerTrn(phone_num,
|
79 |
+
hps.data.filter_length // 2 + 1,
|
80 |
+
hps.train.segment_size // hps.data.hop_length,
|
81 |
+
n_speakers=num_speakers,
|
82 |
+
**hps.model)
|
83 |
+
utils.load_checkpoint(args.checkpoint, net_g, None)
|
84 |
+
net_g.forward = net_g.export_forward
|
85 |
+
net_g.eval()
|
86 |
+
|
87 |
+
seq = torch.randint(low=0, high=phone_num, size=(1, 10), dtype=torch.long)
|
88 |
+
seq_len = torch.IntTensor([seq.size(1)]).long()
|
89 |
+
|
90 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
91 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
92 |
+
scales = torch.FloatTensor([0.667, 1.0, 0.8])
|
93 |
+
# make triton dynamic shape happy
|
94 |
+
scales = scales.unsqueeze(0)
|
95 |
+
sid = torch.IntTensor([0]).long()
|
96 |
+
|
97 |
+
dummy_input = (seq, seq_len, scales, sid)
|
98 |
+
torch.onnx.export(model=net_g,
|
99 |
+
args=dummy_input,
|
100 |
+
f=args.onnx_model,
|
101 |
+
input_names=['input', 'input_lengths', 'scales', 'sid'],
|
102 |
+
output_names=['output'],
|
103 |
+
dynamic_axes={
|
104 |
+
'input': {
|
105 |
+
0: 'batch',
|
106 |
+
1: 'phonemes'
|
107 |
+
},
|
108 |
+
'input_lengths': {
|
109 |
+
0: 'batch'
|
110 |
+
},
|
111 |
+
'scales': {
|
112 |
+
0: 'batch'
|
113 |
+
},
|
114 |
+
'sid': {
|
115 |
+
0: 'batch'
|
116 |
+
},
|
117 |
+
'output': {
|
118 |
+
0: 'batch',
|
119 |
+
1: 'audio',
|
120 |
+
2: 'audio_length'
|
121 |
+
}
|
122 |
+
},
|
123 |
+
opset_version=13,
|
124 |
+
verbose=False)
|
125 |
+
|
126 |
+
# Verify onnx precision
|
127 |
+
torch_output = net_g(seq, seq_len, scales, sid)
|
128 |
+
providers = [args.providers]
|
129 |
+
ort_sess = ort.InferenceSession(args.onnx_model, providers=providers)
|
130 |
+
ort_inputs = {
|
131 |
+
'input': to_numpy(seq),
|
132 |
+
'input_lengths': to_numpy(seq_len),
|
133 |
+
'scales': to_numpy(scales),
|
134 |
+
'sid': to_numpy(sid),
|
135 |
+
}
|
136 |
+
onnx_output = ort_sess.run(None, ort_inputs)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
main()
|
export/vits/inference.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
from scipy.io import wavfile
|
19 |
+
import torch
|
20 |
+
|
21 |
+
import commons
|
22 |
+
from models import SynthesizerTrn
|
23 |
+
import utils
|
24 |
+
|
25 |
+
|
26 |
+
def get_args():
|
27 |
+
parser = argparse.ArgumentParser(description='inference')
|
28 |
+
parser.add_argument('--checkpoint', required=True, help='checkpoint')
|
29 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
30 |
+
parser.add_argument('--outdir', required=True, help='ouput directory')
|
31 |
+
parser.add_argument('--phone_table',
|
32 |
+
required=True,
|
33 |
+
help='input phone dict')
|
34 |
+
parser.add_argument('--speaker_table', default=None, help='speaker table')
|
35 |
+
parser.add_argument('--test_file', required=True, help='test file')
|
36 |
+
args = parser.parse_args()
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
args = get_args()
|
42 |
+
print(args)
|
43 |
+
phone_dict = {}
|
44 |
+
with open(args.phone_table) as p_f:
|
45 |
+
for line in p_f:
|
46 |
+
phone_id = line.strip().split()
|
47 |
+
phone_dict[phone_id[0]] = int(phone_id[1])
|
48 |
+
speaker_dict = {}
|
49 |
+
if args.speaker_table is not None:
|
50 |
+
with open(args.speaker_table) as p_f:
|
51 |
+
for line in p_f:
|
52 |
+
arr = line.strip().split()
|
53 |
+
assert len(arr) == 2
|
54 |
+
speaker_dict[arr[0]] = int(arr[1])
|
55 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
56 |
+
|
57 |
+
net_g = SynthesizerTrn(
|
58 |
+
len(phone_dict) + 1,
|
59 |
+
hps.data.filter_length // 2 + 1,
|
60 |
+
hps.train.segment_size // hps.data.hop_length,
|
61 |
+
n_speakers=len(speaker_dict) + 1, # 0 is kept for unknown speaker
|
62 |
+
**hps.model).cuda()
|
63 |
+
net_g.eval()
|
64 |
+
utils.load_checkpoint(args.checkpoint, net_g, None)
|
65 |
+
|
66 |
+
with open(args.test_file) as fin:
|
67 |
+
for line in fin:
|
68 |
+
arr = line.strip().split("|")
|
69 |
+
audio_path = arr[0]
|
70 |
+
if len(arr) == 2:
|
71 |
+
sid = 0
|
72 |
+
text = arr[1]
|
73 |
+
else:
|
74 |
+
sid = speaker_dict[arr[1]]
|
75 |
+
text = arr[2]
|
76 |
+
seq = [phone_dict[symbol] for symbol in text.split()]
|
77 |
+
if hps.data.add_blank:
|
78 |
+
seq = commons.intersperse(seq, 0)
|
79 |
+
seq = torch.LongTensor(seq)
|
80 |
+
with torch.no_grad():
|
81 |
+
x = seq.cuda().unsqueeze(0)
|
82 |
+
x_length = torch.LongTensor([seq.size(0)]).cuda()
|
83 |
+
sid = torch.LongTensor([sid]).cuda()
|
84 |
+
audio = net_g.infer(
|
85 |
+
x,
|
86 |
+
x_length,
|
87 |
+
sid=sid,
|
88 |
+
noise_scale=.667,
|
89 |
+
noise_scale_w=0.8,
|
90 |
+
length_scale=1)[0][0, 0].data.cpu().float().numpy()
|
91 |
+
audio *= 32767 / max(0.01, np.max(np.abs(audio))) * 0.6
|
92 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
93 |
+
wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
|
94 |
+
hps.data.sampling_rate, audio.astype(np.int16))
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
main()
|
export/vits/inference_onnx.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Yongqiang Li (yongqiangli@alumni.hust.edu.cn)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
from text import text_to_sequence
|
17 |
+
import numpy as np
|
18 |
+
from scipy.io import wavfile
|
19 |
+
import torch
|
20 |
+
import json
|
21 |
+
import commons
|
22 |
+
import utils
|
23 |
+
import sys
|
24 |
+
import pathlib
|
25 |
+
|
26 |
+
try:
|
27 |
+
import onnxruntime as ort
|
28 |
+
except ImportError:
|
29 |
+
print('Please install onnxruntime!')
|
30 |
+
sys.exit(1)
|
31 |
+
|
32 |
+
|
33 |
+
def to_numpy(tensor: torch.Tensor):
|
34 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
35 |
+
else tensor.detach().numpy()
|
36 |
+
|
37 |
+
|
38 |
+
def get_args():
|
39 |
+
parser = argparse.ArgumentParser(description='inference')
|
40 |
+
parser.add_argument('--onnx_model', required=True, help='onnx model')
|
41 |
+
parser.add_argument('--cfg', required=True, help='config file')
|
42 |
+
parser.add_argument('--outdir', default="onnx_output",
|
43 |
+
help='ouput directory')
|
44 |
+
# parser.add_argument('--phone_table',
|
45 |
+
# required=True,
|
46 |
+
# help='input phone dict')
|
47 |
+
# parser.add_argument('--speaker_table', default=None, help='speaker table')
|
48 |
+
parser.add_argument('--test_file', required=True, help='test file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def get_symbols_from_json(path):
|
54 |
+
import os
|
55 |
+
assert os.path.isfile(path)
|
56 |
+
with open(path, 'r') as f:
|
57 |
+
data = json.load(f)
|
58 |
+
return data['symbols']
|
59 |
+
|
60 |
+
|
61 |
+
def main():
|
62 |
+
args = get_args()
|
63 |
+
print(args)
|
64 |
+
if not pathlib.Path(args.outdir).exists():
|
65 |
+
pathlib.Path(args.outdir).mkdir(exist_ok=True, parents=True)
|
66 |
+
# phones =
|
67 |
+
symbols = get_symbols_from_json(args.cfg)
|
68 |
+
phone_dict = {
|
69 |
+
symbol: i for i, symbol in enumerate(symbols)
|
70 |
+
}
|
71 |
+
|
72 |
+
# speaker_dict = {}
|
73 |
+
# if args.speaker_table is not None:
|
74 |
+
# with open(args.speaker_table) as p_f:
|
75 |
+
# for line in p_f:
|
76 |
+
# arr = line.strip().split()
|
77 |
+
# assert len(arr) == 2
|
78 |
+
# speaker_dict[arr[0]] = int(arr[1])
|
79 |
+
hps = utils.get_hparams_from_file(args.cfg)
|
80 |
+
|
81 |
+
ort_sess = ort.InferenceSession(args.onnx_model)
|
82 |
+
|
83 |
+
with open(args.test_file) as fin:
|
84 |
+
for line in fin:
|
85 |
+
arr = line.strip().split("|")
|
86 |
+
audio_path = arr[0]
|
87 |
+
|
88 |
+
# TODO: 控制说话人编号
|
89 |
+
sid = 8
|
90 |
+
text = arr[1]
|
91 |
+
# else:
|
92 |
+
# sid = speaker_dict[arr[1]]
|
93 |
+
# text = arr[2]
|
94 |
+
seq = text_to_sequence(text, symbols=hps.symbols, cleaner_names=["japanese_cleaners2"]
|
95 |
+
)
|
96 |
+
if hps.data.add_blank:
|
97 |
+
seq = commons.intersperse(seq, 0)
|
98 |
+
|
99 |
+
# if hps.data.add_blank:
|
100 |
+
# seq = commons.intersperse(seq, 0)
|
101 |
+
with torch.no_grad():
|
102 |
+
# x = torch.LongTensor([seq])
|
103 |
+
# x_len = torch.IntTensor([x.size(1)]).long()
|
104 |
+
# sid = torch.LongTensor([sid]).long()
|
105 |
+
# scales = torch.FloatTensor([0.667, 1.0, 1])
|
106 |
+
# # make triton dynamic shape happy
|
107 |
+
# scales = scales.unsqueeze(0)
|
108 |
+
|
109 |
+
# use numpy to replace torch
|
110 |
+
x = np.array([seq], dtype=np.int64)
|
111 |
+
x_len = np.array([x.shape[1]], dtype=np.int64)
|
112 |
+
sid = np.array([sid], dtype=np.int64)
|
113 |
+
# noise(可用于控制感情等变化程度) lenth(可用于控制整体语速) noisew(控制音素发音长度变化程度)
|
114 |
+
# 参考 https://github.com/gbxh/genshinTTS
|
115 |
+
scales = np.array([0.667, 0.8, 1], dtype=np.float32)
|
116 |
+
# scales = scales[np.newaxis, :]
|
117 |
+
# scales.reshape(1, -1)
|
118 |
+
scales.resize(1, 3)
|
119 |
+
|
120 |
+
ort_inputs = {
|
121 |
+
'input': x,
|
122 |
+
'input_lengths': x_len,
|
123 |
+
'scales': scales,
|
124 |
+
'sid': sid
|
125 |
+
}
|
126 |
+
|
127 |
+
# ort_inputs = {
|
128 |
+
# 'input': to_numpy(x),
|
129 |
+
# 'input_lengths': to_numpy(x_len),
|
130 |
+
# 'scales': to_numpy(scales),
|
131 |
+
# 'sid': to_numpy(sid)
|
132 |
+
# }
|
133 |
+
import time
|
134 |
+
# start_time = time.time()
|
135 |
+
start_time = time.perf_counter()
|
136 |
+
audio = np.squeeze(ort_sess.run(None, ort_inputs))
|
137 |
+
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
|
138 |
+
audio = np.clip(audio, -32767.0, 32767.0)
|
139 |
+
end_time = time.perf_counter()
|
140 |
+
# end_time = time.time()
|
141 |
+
print("infer time cost: ", end_time - start_time, "s")
|
142 |
+
|
143 |
+
wavfile.write(args.outdir + "/" + audio_path.split("/")[-1],
|
144 |
+
hps.data.sampling_rate, audio.astype(np.int16))
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == '__main__':
|
148 |
+
main()
|
export/vits/losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr)**2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += (r_loss + g_loss)
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg)**2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
export/vits/mel_processing.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
|
6 |
+
MAX_WAV_VALUE = 32768.0
|
7 |
+
|
8 |
+
|
9 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
10 |
+
"""
|
11 |
+
PARAMS
|
12 |
+
------
|
13 |
+
C: compression factor
|
14 |
+
"""
|
15 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
16 |
+
|
17 |
+
|
18 |
+
def dynamic_range_decompression_torch(x, C=1):
|
19 |
+
"""
|
20 |
+
PARAMS
|
21 |
+
------
|
22 |
+
C: compression factor used to compress
|
23 |
+
"""
|
24 |
+
return torch.exp(x) / C
|
25 |
+
|
26 |
+
|
27 |
+
def spectral_normalize_torch(magnitudes):
|
28 |
+
output = dynamic_range_compression_torch(magnitudes)
|
29 |
+
return output
|
30 |
+
|
31 |
+
|
32 |
+
def spectral_de_normalize_torch(magnitudes):
|
33 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
mel_basis = {}
|
38 |
+
hann_window = {}
|
39 |
+
|
40 |
+
|
41 |
+
def spectrogram_torch(y,
|
42 |
+
n_fft,
|
43 |
+
sampling_rate,
|
44 |
+
hop_size,
|
45 |
+
win_size,
|
46 |
+
center=False):
|
47 |
+
if torch.min(y) < -1.:
|
48 |
+
print('min value is ', torch.min(y))
|
49 |
+
if torch.max(y) > 1.:
|
50 |
+
print('max value is ', torch.max(y))
|
51 |
+
|
52 |
+
global hann_window
|
53 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
54 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
55 |
+
if wnsize_dtype_device not in hann_window:
|
56 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
57 |
+
dtype=y.dtype, device=y.device)
|
58 |
+
|
59 |
+
y = F.pad(y.unsqueeze(1),
|
60 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
61 |
+
mode='reflect')
|
62 |
+
y = y.squeeze(1)
|
63 |
+
|
64 |
+
spec = torch.stft(y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[wnsize_dtype_device],
|
69 |
+
center=center,
|
70 |
+
pad_mode='reflect',
|
71 |
+
normalized=False,
|
72 |
+
onesided=True)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device)
|
86 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
87 |
+
spec = spectral_normalize_torch(spec)
|
88 |
+
return spec
|
89 |
+
|
90 |
+
|
91 |
+
def mel_spectrogram_torch(y,
|
92 |
+
n_fft,
|
93 |
+
num_mels,
|
94 |
+
sampling_rate,
|
95 |
+
hop_size,
|
96 |
+
win_size,
|
97 |
+
fmin,
|
98 |
+
fmax,
|
99 |
+
center=False):
|
100 |
+
if torch.min(y) < -1.:
|
101 |
+
print('min value is ', torch.min(y))
|
102 |
+
if torch.max(y) > 1.:
|
103 |
+
print('max value is ', torch.max(y))
|
104 |
+
|
105 |
+
global mel_basis, hann_window
|
106 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
107 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
108 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
109 |
+
if fmax_dtype_device not in mel_basis:
|
110 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
111 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
112 |
+
dtype=y.dtype, device=y.device)
|
113 |
+
if wnsize_dtype_device not in hann_window:
|
114 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
115 |
+
dtype=y.dtype, device=y.device)
|
116 |
+
|
117 |
+
y = F.pad(y.unsqueeze(1),
|
118 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
119 |
+
mode='reflect')
|
120 |
+
y = y.squeeze(1)
|
121 |
+
|
122 |
+
spec = torch.stft(y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode='reflect',
|
129 |
+
normalized=False,
|
130 |
+
onesided=True)
|
131 |
+
|
132 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
133 |
+
|
134 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
135 |
+
spec = spectral_normalize_torch(spec)
|
136 |
+
|
137 |
+
return spec
|
export/vits/models.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
8 |
+
import monotonic_align
|
9 |
+
|
10 |
+
import commons
|
11 |
+
import modules
|
12 |
+
import attentions
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
class StochasticDurationPredictor(nn.Module):
|
17 |
+
def __init__(self,
|
18 |
+
in_channels,
|
19 |
+
filter_channels,
|
20 |
+
kernel_size,
|
21 |
+
p_dropout,
|
22 |
+
n_flows=4,
|
23 |
+
gin_channels=0):
|
24 |
+
super().__init__()
|
25 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
26 |
+
self.in_channels = in_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.kernel_size = kernel_size
|
29 |
+
self.p_dropout = p_dropout
|
30 |
+
self.n_flows = n_flows
|
31 |
+
self.gin_channels = gin_channels
|
32 |
+
|
33 |
+
self.log_flow = modules.Log()
|
34 |
+
self.flows = nn.ModuleList()
|
35 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
36 |
+
for i in range(n_flows):
|
37 |
+
self.flows.append(
|
38 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
39 |
+
self.flows.append(modules.Flip())
|
40 |
+
|
41 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
42 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
43 |
+
self.post_convs = modules.DDSConv(filter_channels,
|
44 |
+
kernel_size,
|
45 |
+
n_layers=3,
|
46 |
+
p_dropout=p_dropout)
|
47 |
+
self.post_flows = nn.ModuleList()
|
48 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
49 |
+
for i in range(4):
|
50 |
+
self.post_flows.append(
|
51 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
52 |
+
self.post_flows.append(modules.Flip())
|
53 |
+
|
54 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
55 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
56 |
+
self.convs = modules.DDSConv(filter_channels,
|
57 |
+
kernel_size,
|
58 |
+
n_layers=3,
|
59 |
+
p_dropout=p_dropout)
|
60 |
+
if gin_channels != 0:
|
61 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
62 |
+
|
63 |
+
def forward(self,
|
64 |
+
x,
|
65 |
+
x_mask,
|
66 |
+
w=None,
|
67 |
+
g=None,
|
68 |
+
reverse=False,
|
69 |
+
noise_scale=1.0):
|
70 |
+
x = torch.detach(x)
|
71 |
+
x = self.pre(x)
|
72 |
+
if g is not None:
|
73 |
+
g = torch.detach(g)
|
74 |
+
x = x + self.cond(g)
|
75 |
+
x = self.convs(x, x_mask)
|
76 |
+
x = self.proj(x) * x_mask
|
77 |
+
|
78 |
+
if not reverse:
|
79 |
+
flows = self.flows
|
80 |
+
assert w is not None
|
81 |
+
|
82 |
+
logdet_tot_q = 0
|
83 |
+
h_w = self.post_pre(w)
|
84 |
+
h_w = self.post_convs(h_w, x_mask)
|
85 |
+
h_w = self.post_proj(h_w) * x_mask
|
86 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(
|
87 |
+
device=x.device, dtype=x.dtype) * x_mask
|
88 |
+
z_q = e_q
|
89 |
+
for flow in self.post_flows:
|
90 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
91 |
+
logdet_tot_q += logdet_q
|
92 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
93 |
+
u = torch.sigmoid(z_u) * x_mask
|
94 |
+
z0 = (w - u) * x_mask
|
95 |
+
logdet_tot_q += torch.sum(
|
96 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
97 |
+
logq = torch.sum(
|
98 |
+
-0.5 * (math.log(2 * math.pi) +
|
99 |
+
(e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
|
100 |
+
|
101 |
+
logdet_tot = 0
|
102 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
103 |
+
logdet_tot += logdet
|
104 |
+
z = torch.cat([z0, z1], 1)
|
105 |
+
for flow in flows:
|
106 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
107 |
+
logdet_tot = logdet_tot + logdet
|
108 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) +
|
109 |
+
(z**2)) * x_mask, [1, 2]) - logdet_tot
|
110 |
+
return nll + logq # [b]
|
111 |
+
else:
|
112 |
+
flows = list(reversed(self.flows))
|
113 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
114 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(
|
115 |
+
device=x.device, dtype=x.dtype) * noise_scale
|
116 |
+
for flow in flows:
|
117 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
118 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
119 |
+
logw = z0
|
120 |
+
return logw
|
121 |
+
|
122 |
+
|
123 |
+
class DurationPredictor(nn.Module):
|
124 |
+
def __init__(self,
|
125 |
+
in_channels,
|
126 |
+
filter_channels,
|
127 |
+
kernel_size,
|
128 |
+
p_dropout,
|
129 |
+
gin_channels=0):
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
self.in_channels = in_channels
|
133 |
+
self.filter_channels = filter_channels
|
134 |
+
self.kernel_size = kernel_size
|
135 |
+
self.p_dropout = p_dropout
|
136 |
+
self.gin_channels = gin_channels
|
137 |
+
|
138 |
+
self.drop = nn.Dropout(p_dropout)
|
139 |
+
self.conv_1 = nn.Conv1d(in_channels,
|
140 |
+
filter_channels,
|
141 |
+
kernel_size,
|
142 |
+
padding=kernel_size // 2)
|
143 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
144 |
+
self.conv_2 = nn.Conv1d(filter_channels,
|
145 |
+
filter_channels,
|
146 |
+
kernel_size,
|
147 |
+
padding=kernel_size // 2)
|
148 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
149 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
150 |
+
|
151 |
+
if gin_channels != 0:
|
152 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
153 |
+
|
154 |
+
def forward(self, x, x_mask, g=None):
|
155 |
+
x = torch.detach(x)
|
156 |
+
if g is not None:
|
157 |
+
g = torch.detach(g)
|
158 |
+
x = x + self.cond(g)
|
159 |
+
x = self.conv_1(x * x_mask)
|
160 |
+
x = torch.relu(x)
|
161 |
+
x = self.norm_1(x)
|
162 |
+
x = self.drop(x)
|
163 |
+
x = self.conv_2(x * x_mask)
|
164 |
+
x = torch.relu(x)
|
165 |
+
x = self.norm_2(x)
|
166 |
+
x = self.drop(x)
|
167 |
+
x = self.proj(x * x_mask)
|
168 |
+
return x * x_mask
|
169 |
+
|
170 |
+
|
171 |
+
class TextEncoder(nn.Module):
|
172 |
+
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels,
|
173 |
+
n_heads, n_layers, kernel_size, p_dropout):
|
174 |
+
super().__init__()
|
175 |
+
self.n_vocab = n_vocab
|
176 |
+
self.out_channels = out_channels
|
177 |
+
self.hidden_channels = hidden_channels
|
178 |
+
self.filter_channels = filter_channels
|
179 |
+
self.n_heads = n_heads
|
180 |
+
self.n_layers = n_layers
|
181 |
+
self.kernel_size = kernel_size
|
182 |
+
self.p_dropout = p_dropout
|
183 |
+
|
184 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
185 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
186 |
+
|
187 |
+
self.encoder = attentions.Encoder(hidden_channels, filter_channels,
|
188 |
+
n_heads, n_layers, kernel_size,
|
189 |
+
p_dropout)
|
190 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
191 |
+
|
192 |
+
def forward(self, x, x_lengths):
|
193 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
194 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
195 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
196 |
+
1).to(x.dtype)
|
197 |
+
|
198 |
+
x = self.encoder(x * x_mask, x_mask)
|
199 |
+
stats = self.proj(x) * x_mask
|
200 |
+
|
201 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
202 |
+
return x, m, logs, x_mask
|
203 |
+
|
204 |
+
|
205 |
+
class ResidualCouplingBlock(nn.Module):
|
206 |
+
def __init__(self,
|
207 |
+
channels,
|
208 |
+
hidden_channels,
|
209 |
+
kernel_size,
|
210 |
+
dilation_rate,
|
211 |
+
n_layers,
|
212 |
+
n_flows=4,
|
213 |
+
gin_channels=0):
|
214 |
+
super().__init__()
|
215 |
+
self.channels = channels
|
216 |
+
self.hidden_channels = hidden_channels
|
217 |
+
self.kernel_size = kernel_size
|
218 |
+
self.dilation_rate = dilation_rate
|
219 |
+
self.n_layers = n_layers
|
220 |
+
self.n_flows = n_flows
|
221 |
+
self.gin_channels = gin_channels
|
222 |
+
|
223 |
+
self.flows = nn.ModuleList()
|
224 |
+
for i in range(n_flows):
|
225 |
+
self.flows.append(
|
226 |
+
modules.ResidualCouplingLayer(channels,
|
227 |
+
hidden_channels,
|
228 |
+
kernel_size,
|
229 |
+
dilation_rate,
|
230 |
+
n_layers,
|
231 |
+
gin_channels=gin_channels,
|
232 |
+
mean_only=True))
|
233 |
+
self.flows.append(modules.Flip())
|
234 |
+
|
235 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
236 |
+
if not reverse:
|
237 |
+
for flow in self.flows:
|
238 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
239 |
+
else:
|
240 |
+
for flow in reversed(self.flows):
|
241 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
class PosteriorEncoder(nn.Module):
|
246 |
+
def __init__(self,
|
247 |
+
in_channels,
|
248 |
+
out_channels,
|
249 |
+
hidden_channels,
|
250 |
+
kernel_size,
|
251 |
+
dilation_rate,
|
252 |
+
n_layers,
|
253 |
+
gin_channels=0):
|
254 |
+
super().__init__()
|
255 |
+
self.in_channels = in_channels
|
256 |
+
self.out_channels = out_channels
|
257 |
+
self.hidden_channels = hidden_channels
|
258 |
+
self.kernel_size = kernel_size
|
259 |
+
self.dilation_rate = dilation_rate
|
260 |
+
self.n_layers = n_layers
|
261 |
+
self.gin_channels = gin_channels
|
262 |
+
|
263 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
264 |
+
self.enc = modules.WN(hidden_channels,
|
265 |
+
kernel_size,
|
266 |
+
dilation_rate,
|
267 |
+
n_layers,
|
268 |
+
gin_channels=gin_channels)
|
269 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
270 |
+
|
271 |
+
def forward(self, x, x_lengths, g=None):
|
272 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
|
273 |
+
1).to(x.dtype)
|
274 |
+
x = self.pre(x) * x_mask
|
275 |
+
x = self.enc(x, x_mask, g=g)
|
276 |
+
stats = self.proj(x) * x_mask
|
277 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
278 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
279 |
+
return z, m, logs, x_mask
|
280 |
+
|
281 |
+
|
282 |
+
class Generator(torch.nn.Module):
|
283 |
+
def __init__(self,
|
284 |
+
initial_channel,
|
285 |
+
resblock,
|
286 |
+
resblock_kernel_sizes,
|
287 |
+
resblock_dilation_sizes,
|
288 |
+
upsample_rates,
|
289 |
+
upsample_initial_channel,
|
290 |
+
upsample_kernel_sizes,
|
291 |
+
gin_channels=0):
|
292 |
+
super(Generator, self).__init__()
|
293 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
294 |
+
self.num_upsamples = len(upsample_rates)
|
295 |
+
self.conv_pre = Conv1d(initial_channel,
|
296 |
+
upsample_initial_channel,
|
297 |
+
7,
|
298 |
+
1,
|
299 |
+
padding=3)
|
300 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
301 |
+
|
302 |
+
self.ups = nn.ModuleList()
|
303 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
304 |
+
self.ups.append(
|
305 |
+
weight_norm(
|
306 |
+
ConvTranspose1d(upsample_initial_channel // (2**i),
|
307 |
+
upsample_initial_channel // (2**(i + 1)),
|
308 |
+
k,
|
309 |
+
u,
|
310 |
+
padding=(k - u) // 2)))
|
311 |
+
|
312 |
+
self.resblocks = nn.ModuleList()
|
313 |
+
for i in range(len(self.ups)):
|
314 |
+
ch = upsample_initial_channel // (2**(i + 1))
|
315 |
+
for j, (k, d) in enumerate(
|
316 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
317 |
+
self.resblocks.append(resblock(ch, k, d))
|
318 |
+
|
319 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
320 |
+
self.ups.apply(init_weights)
|
321 |
+
|
322 |
+
if gin_channels != 0:
|
323 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
324 |
+
|
325 |
+
def forward(self, x, g=None):
|
326 |
+
x = self.conv_pre(x)
|
327 |
+
if g is not None:
|
328 |
+
x = x + self.cond(g)
|
329 |
+
|
330 |
+
for i in range(self.num_upsamples):
|
331 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
332 |
+
x = self.ups[i](x)
|
333 |
+
xs = None
|
334 |
+
for j in range(self.num_kernels):
|
335 |
+
if xs is None:
|
336 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
337 |
+
else:
|
338 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
339 |
+
x = xs / self.num_kernels
|
340 |
+
x = F.leaky_relu(x)
|
341 |
+
x = self.conv_post(x)
|
342 |
+
x = torch.tanh(x)
|
343 |
+
|
344 |
+
return x
|
345 |
+
|
346 |
+
def remove_weight_norm(self):
|
347 |
+
print('Removing weight norm...')
|
348 |
+
for l in self.ups:
|
349 |
+
remove_weight_norm(l)
|
350 |
+
for l in self.resblocks:
|
351 |
+
l.remove_weight_norm()
|
352 |
+
|
353 |
+
|
354 |
+
class DiscriminatorP(torch.nn.Module):
|
355 |
+
def __init__(self,
|
356 |
+
period,
|
357 |
+
kernel_size=5,
|
358 |
+
stride=3,
|
359 |
+
use_spectral_norm=False):
|
360 |
+
super(DiscriminatorP, self).__init__()
|
361 |
+
self.period = period
|
362 |
+
self.use_spectral_norm = use_spectral_norm
|
363 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
364 |
+
self.convs = nn.ModuleList([
|
365 |
+
norm_f(
|
366 |
+
Conv2d(1,
|
367 |
+
32, (kernel_size, 1), (stride, 1),
|
368 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
369 |
+
norm_f(
|
370 |
+
Conv2d(32,
|
371 |
+
128, (kernel_size, 1), (stride, 1),
|
372 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
373 |
+
norm_f(
|
374 |
+
Conv2d(128,
|
375 |
+
512, (kernel_size, 1), (stride, 1),
|
376 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
377 |
+
norm_f(
|
378 |
+
Conv2d(512,
|
379 |
+
1024, (kernel_size, 1), (stride, 1),
|
380 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
381 |
+
norm_f(
|
382 |
+
Conv2d(1024,
|
383 |
+
1024, (kernel_size, 1),
|
384 |
+
1,
|
385 |
+
padding=(get_padding(kernel_size, 1), 0))),
|
386 |
+
])
|
387 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
388 |
+
|
389 |
+
def forward(self, x):
|
390 |
+
fmap = []
|
391 |
+
|
392 |
+
# 1d to 2d
|
393 |
+
b, c, t = x.shape
|
394 |
+
if t % self.period != 0: # pad first
|
395 |
+
n_pad = self.period - (t % self.period)
|
396 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
397 |
+
t = t + n_pad
|
398 |
+
x = x.view(b, c, t // self.period, self.period)
|
399 |
+
|
400 |
+
for l in self.convs:
|
401 |
+
x = l(x)
|
402 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
403 |
+
fmap.append(x)
|
404 |
+
x = self.conv_post(x)
|
405 |
+
fmap.append(x)
|
406 |
+
x = torch.flatten(x, 1, -1)
|
407 |
+
|
408 |
+
return x, fmap
|
409 |
+
|
410 |
+
|
411 |
+
class DiscriminatorS(torch.nn.Module):
|
412 |
+
def __init__(self, use_spectral_norm=False):
|
413 |
+
super(DiscriminatorS, self).__init__()
|
414 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
415 |
+
self.convs = nn.ModuleList([
|
416 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
417 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
418 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
419 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
420 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
421 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
422 |
+
])
|
423 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
fmap = []
|
427 |
+
|
428 |
+
for l in self.convs:
|
429 |
+
x = l(x)
|
430 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
431 |
+
fmap.append(x)
|
432 |
+
x = self.conv_post(x)
|
433 |
+
fmap.append(x)
|
434 |
+
x = torch.flatten(x, 1, -1)
|
435 |
+
|
436 |
+
return x, fmap
|
437 |
+
|
438 |
+
|
439 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
440 |
+
def __init__(self, use_spectral_norm=False):
|
441 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
442 |
+
periods = [2, 3, 5, 7, 11]
|
443 |
+
|
444 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
445 |
+
discs = discs + [
|
446 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm)
|
447 |
+
for i in periods
|
448 |
+
]
|
449 |
+
self.discriminators = nn.ModuleList(discs)
|
450 |
+
|
451 |
+
def forward(self, y, y_hat):
|
452 |
+
y_d_rs = []
|
453 |
+
y_d_gs = []
|
454 |
+
fmap_rs = []
|
455 |
+
fmap_gs = []
|
456 |
+
for i, d in enumerate(self.discriminators):
|
457 |
+
y_d_r, fmap_r = d(y)
|
458 |
+
y_d_g, fmap_g = d(y_hat)
|
459 |
+
y_d_rs.append(y_d_r)
|
460 |
+
y_d_gs.append(y_d_g)
|
461 |
+
fmap_rs.append(fmap_r)
|
462 |
+
fmap_gs.append(fmap_g)
|
463 |
+
|
464 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
465 |
+
|
466 |
+
|
467 |
+
class SynthesizerTrn(nn.Module):
|
468 |
+
"""
|
469 |
+
Synthesizer for Training
|
470 |
+
"""
|
471 |
+
def __init__(self,
|
472 |
+
n_vocab,
|
473 |
+
spec_channels,
|
474 |
+
segment_size,
|
475 |
+
inter_channels,
|
476 |
+
hidden_channels,
|
477 |
+
filter_channels,
|
478 |
+
n_heads,
|
479 |
+
n_layers,
|
480 |
+
kernel_size,
|
481 |
+
p_dropout,
|
482 |
+
resblock,
|
483 |
+
resblock_kernel_sizes,
|
484 |
+
resblock_dilation_sizes,
|
485 |
+
upsample_rates,
|
486 |
+
upsample_initial_channel,
|
487 |
+
upsample_kernel_sizes,
|
488 |
+
n_speakers=0,
|
489 |
+
gin_channels=0,
|
490 |
+
use_sdp=True,
|
491 |
+
**kwargs):
|
492 |
+
|
493 |
+
super().__init__()
|
494 |
+
self.n_vocab = n_vocab
|
495 |
+
self.spec_channels = spec_channels
|
496 |
+
self.inter_channels = inter_channels
|
497 |
+
self.hidden_channels = hidden_channels
|
498 |
+
self.filter_channels = filter_channels
|
499 |
+
self.n_heads = n_heads
|
500 |
+
self.n_layers = n_layers
|
501 |
+
self.kernel_size = kernel_size
|
502 |
+
self.p_dropout = p_dropout
|
503 |
+
self.resblock = resblock
|
504 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
505 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
506 |
+
self.upsample_rates = upsample_rates
|
507 |
+
self.upsample_initial_channel = upsample_initial_channel
|
508 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
509 |
+
self.segment_size = segment_size
|
510 |
+
self.n_speakers = n_speakers
|
511 |
+
self.gin_channels = gin_channels
|
512 |
+
if self.n_speakers != 0:
|
513 |
+
message = "gin_channels must be none zero for multiple speakers"
|
514 |
+
assert gin_channels != 0, message
|
515 |
+
|
516 |
+
self.use_sdp = use_sdp
|
517 |
+
|
518 |
+
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels,
|
519 |
+
filter_channels, n_heads, n_layers,
|
520 |
+
kernel_size, p_dropout)
|
521 |
+
self.dec = Generator(inter_channels,
|
522 |
+
resblock,
|
523 |
+
resblock_kernel_sizes,
|
524 |
+
resblock_dilation_sizes,
|
525 |
+
upsample_rates,
|
526 |
+
upsample_initial_channel,
|
527 |
+
upsample_kernel_sizes,
|
528 |
+
gin_channels=gin_channels)
|
529 |
+
self.enc_q = PosteriorEncoder(spec_channels,
|
530 |
+
inter_channels,
|
531 |
+
hidden_channels,
|
532 |
+
5,
|
533 |
+
1,
|
534 |
+
16,
|
535 |
+
gin_channels=gin_channels)
|
536 |
+
self.flow = ResidualCouplingBlock(inter_channels,
|
537 |
+
hidden_channels,
|
538 |
+
5,
|
539 |
+
1,
|
540 |
+
4,
|
541 |
+
gin_channels=gin_channels)
|
542 |
+
|
543 |
+
if use_sdp:
|
544 |
+
self.dp = StochasticDurationPredictor(hidden_channels,
|
545 |
+
192,
|
546 |
+
3,
|
547 |
+
0.5,
|
548 |
+
4,
|
549 |
+
gin_channels=gin_channels)
|
550 |
+
else:
|
551 |
+
self.dp = DurationPredictor(hidden_channels,
|
552 |
+
256,
|
553 |
+
3,
|
554 |
+
0.5,
|
555 |
+
gin_channels=gin_channels)
|
556 |
+
|
557 |
+
if n_speakers > 1:
|
558 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
559 |
+
|
560 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
561 |
+
|
562 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
563 |
+
if self.n_speakers > 0:
|
564 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
565 |
+
else:
|
566 |
+
g = None
|
567 |
+
|
568 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
569 |
+
z_p = self.flow(z, y_mask, g=g)
|
570 |
+
|
571 |
+
with torch.no_grad():
|
572 |
+
# negative cross-entropy
|
573 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
574 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1],
|
575 |
+
keepdim=True) # [b, 1, t_s]
|
576 |
+
neg_cent2 = torch.matmul(
|
577 |
+
-0.5 * (z_p**2).transpose(1, 2),
|
578 |
+
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
579 |
+
neg_cent3 = torch.matmul(
|
580 |
+
z_p.transpose(1, 2),
|
581 |
+
(m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
582 |
+
neg_cent4 = torch.sum(-0.5 * (m_p**2) * s_p_sq_r, [1],
|
583 |
+
keepdim=True) # [b, 1, t_s]
|
584 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
585 |
+
|
586 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(
|
587 |
+
y_mask, -1)
|
588 |
+
attn = monotonic_align.maximum_path(
|
589 |
+
neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
590 |
+
|
591 |
+
w = attn.sum(2)
|
592 |
+
if self.use_sdp:
|
593 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
594 |
+
l_length = l_length / torch.sum(x_mask)
|
595 |
+
else:
|
596 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
597 |
+
logw = self.dp(x, x_mask, g=g)
|
598 |
+
l_length = torch.sum(
|
599 |
+
(logw - logw_)**2, [1, 2]) / torch.sum(x_mask) # for averaging
|
600 |
+
|
601 |
+
# expand prior
|
602 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1,
|
603 |
+
2)).transpose(1, 2)
|
604 |
+
logs_p = torch.matmul(attn.squeeze(1),
|
605 |
+
logs_p.transpose(1, 2)).transpose(1, 2)
|
606 |
+
|
607 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
608 |
+
z, y_lengths, self.segment_size)
|
609 |
+
o = self.dec(z_slice, g=g)
|
610 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p,
|
611 |
+
logs_p, m_q,
|
612 |
+
logs_q)
|
613 |
+
|
614 |
+
def infer(self,
|
615 |
+
x,
|
616 |
+
x_lengths,
|
617 |
+
sid=None,
|
618 |
+
noise_scale=1,
|
619 |
+
length_scale=1,
|
620 |
+
noise_scale_w=1.,
|
621 |
+
max_len=None):
|
622 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
623 |
+
if self.n_speakers > 0:
|
624 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
625 |
+
else:
|
626 |
+
g = None
|
627 |
+
|
628 |
+
if self.use_sdp:
|
629 |
+
logw = self.dp(x,
|
630 |
+
x_mask,
|
631 |
+
g=g,
|
632 |
+
reverse=True,
|
633 |
+
noise_scale=noise_scale_w)
|
634 |
+
else:
|
635 |
+
logw = self.dp(x, x_mask, g=g)
|
636 |
+
w = torch.exp(logw) * x_mask * length_scale
|
637 |
+
w_ceil = torch.ceil(w)
|
638 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
639 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
|
640 |
+
1).to(x_mask.dtype)
|
641 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
642 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
643 |
+
|
644 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
645 |
+
1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
646 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(
|
647 |
+
1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
648 |
+
|
649 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
650 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
651 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
652 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
653 |
+
|
654 |
+
def export_forward(self, x, x_lengths, scales, sid):
|
655 |
+
# shape of scales: Bx3, make triton happy
|
656 |
+
audio, *_ = self.infer(x,
|
657 |
+
x_lengths,
|
658 |
+
sid,
|
659 |
+
noise_scale=scales[0][0],
|
660 |
+
length_scale=scales[0][1],
|
661 |
+
noise_scale_w=scales[0][2])
|
662 |
+
return audio
|
663 |
+
|
664 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
665 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
666 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
667 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
668 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
669 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
670 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
671 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
672 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
export/vits/modules.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
LRELU_SLOPE = 0.1
|
14 |
+
|
15 |
+
|
16 |
+
class LayerNorm(nn.Module):
|
17 |
+
def __init__(self, channels, eps=1e-5):
|
18 |
+
super().__init__()
|
19 |
+
self.channels = channels
|
20 |
+
self.eps = eps
|
21 |
+
|
22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = x.transpose(1, -1)
|
27 |
+
x = F.layer_norm(x, (self.channels, ), self.gamma, self.beta, self.eps)
|
28 |
+
return x.transpose(1, -1)
|
29 |
+
|
30 |
+
|
31 |
+
class ConvReluNorm(nn.Module):
|
32 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
|
33 |
+
n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(
|
46 |
+
nn.Conv1d(in_channels,
|
47 |
+
hidden_channels,
|
48 |
+
kernel_size,
|
49 |
+
padding=kernel_size // 2))
|
50 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
51 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers - 1):
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(hidden_channels,
|
55 |
+
hidden_channels,
|
56 |
+
kernel_size,
|
57 |
+
padding=kernel_size // 2))
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
60 |
+
self.proj.weight.data.zero_()
|
61 |
+
self.proj.bias.data.zero_()
|
62 |
+
|
63 |
+
def forward(self, x, x_mask):
|
64 |
+
x_org = x
|
65 |
+
for i in range(self.n_layers):
|
66 |
+
x = self.conv_layers[i](x * x_mask)
|
67 |
+
x = self.norm_layers[i](x)
|
68 |
+
x = self.relu_drop(x)
|
69 |
+
x = x_org + self.proj(x)
|
70 |
+
return x * x_mask
|
71 |
+
|
72 |
+
|
73 |
+
class DDSConv(nn.Module):
|
74 |
+
"""
|
75 |
+
Dialted and Depth-Separable Convolution
|
76 |
+
"""
|
77 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.kernel_size = kernel_size
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.p_dropout = p_dropout
|
83 |
+
|
84 |
+
self.drop = nn.Dropout(p_dropout)
|
85 |
+
self.convs_sep = nn.ModuleList()
|
86 |
+
self.convs_1x1 = nn.ModuleList()
|
87 |
+
self.norms_1 = nn.ModuleList()
|
88 |
+
self.norms_2 = nn.ModuleList()
|
89 |
+
for i in range(n_layers):
|
90 |
+
dilation = kernel_size**i
|
91 |
+
padding = (kernel_size * dilation - dilation) // 2
|
92 |
+
self.convs_sep.append(
|
93 |
+
nn.Conv1d(channels,
|
94 |
+
channels,
|
95 |
+
kernel_size,
|
96 |
+
groups=channels,
|
97 |
+
dilation=dilation,
|
98 |
+
padding=padding))
|
99 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
100 |
+
self.norms_1.append(LayerNorm(channels))
|
101 |
+
self.norms_2.append(LayerNorm(channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
if g is not None:
|
105 |
+
x = x + g
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
y = self.convs_sep[i](x * x_mask)
|
108 |
+
y = self.norms_1[i](y)
|
109 |
+
y = F.gelu(y)
|
110 |
+
y = self.convs_1x1[i](y)
|
111 |
+
y = self.norms_2[i](y)
|
112 |
+
y = F.gelu(y)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = x + y
|
115 |
+
return x * x_mask
|
116 |
+
|
117 |
+
|
118 |
+
class WN(torch.nn.Module):
|
119 |
+
def __init__(self,
|
120 |
+
hidden_channels,
|
121 |
+
kernel_size,
|
122 |
+
dilation_rate,
|
123 |
+
n_layers,
|
124 |
+
gin_channels=0,
|
125 |
+
p_dropout=0):
|
126 |
+
super(WN, self).__init__()
|
127 |
+
assert (kernel_size % 2 == 1)
|
128 |
+
self.hidden_channels = hidden_channels
|
129 |
+
self.kernel_size = kernel_size,
|
130 |
+
self.dilation_rate = dilation_rate
|
131 |
+
self.n_layers = n_layers
|
132 |
+
self.gin_channels = gin_channels
|
133 |
+
self.p_dropout = p_dropout
|
134 |
+
|
135 |
+
self.in_layers = torch.nn.ModuleList()
|
136 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
137 |
+
self.drop = nn.Dropout(p_dropout)
|
138 |
+
|
139 |
+
if gin_channels != 0:
|
140 |
+
cond_layer = torch.nn.Conv1d(gin_channels,
|
141 |
+
2 * hidden_channels * n_layers, 1)
|
142 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer,
|
143 |
+
name='weight')
|
144 |
+
|
145 |
+
for i in range(n_layers):
|
146 |
+
dilation = dilation_rate**i
|
147 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
148 |
+
in_layer = torch.nn.Conv1d(hidden_channels,
|
149 |
+
2 * hidden_channels,
|
150 |
+
kernel_size,
|
151 |
+
dilation=dilation,
|
152 |
+
padding=padding)
|
153 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
154 |
+
self.in_layers.append(in_layer)
|
155 |
+
|
156 |
+
# last one is not necessary
|
157 |
+
if i < n_layers - 1:
|
158 |
+
res_skip_channels = 2 * hidden_channels
|
159 |
+
else:
|
160 |
+
res_skip_channels = hidden_channels
|
161 |
+
|
162 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels,
|
163 |
+
res_skip_channels, 1)
|
164 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer,
|
165 |
+
name='weight')
|
166 |
+
self.res_skip_layers.append(res_skip_layer)
|
167 |
+
|
168 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
169 |
+
output = torch.zeros_like(x)
|
170 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
171 |
+
|
172 |
+
if g is not None:
|
173 |
+
g = self.cond_layer(g)
|
174 |
+
|
175 |
+
for i in range(self.n_layers):
|
176 |
+
x_in = self.in_layers[i](x)
|
177 |
+
if g is not None:
|
178 |
+
cond_offset = i * 2 * self.hidden_channels
|
179 |
+
g_l = g[:,
|
180 |
+
cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
181 |
+
else:
|
182 |
+
g_l = torch.zeros_like(x_in)
|
183 |
+
|
184 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
185 |
+
x_in, g_l, n_channels_tensor)
|
186 |
+
acts = self.drop(acts)
|
187 |
+
|
188 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
189 |
+
if i < self.n_layers - 1:
|
190 |
+
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
191 |
+
x = (x + res_acts) * x_mask
|
192 |
+
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
193 |
+
else:
|
194 |
+
output = output + res_skip_acts
|
195 |
+
return output * x_mask
|
196 |
+
|
197 |
+
def remove_weight_norm(self):
|
198 |
+
if self.gin_channels != 0:
|
199 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
200 |
+
for l in self.in_layers:
|
201 |
+
torch.nn.utils.remove_weight_norm(l)
|
202 |
+
for l in self.res_skip_layers:
|
203 |
+
torch.nn.utils.remove_weight_norm(l)
|
204 |
+
|
205 |
+
|
206 |
+
class ResBlock1(torch.nn.Module):
|
207 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
208 |
+
super(ResBlock1, self).__init__()
|
209 |
+
self.convs1 = nn.ModuleList([
|
210 |
+
weight_norm(
|
211 |
+
Conv1d(channels,
|
212 |
+
channels,
|
213 |
+
kernel_size,
|
214 |
+
1,
|
215 |
+
dilation=dilation[0],
|
216 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
217 |
+
weight_norm(
|
218 |
+
Conv1d(channels,
|
219 |
+
channels,
|
220 |
+
kernel_size,
|
221 |
+
1,
|
222 |
+
dilation=dilation[1],
|
223 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
224 |
+
weight_norm(
|
225 |
+
Conv1d(channels,
|
226 |
+
channels,
|
227 |
+
kernel_size,
|
228 |
+
1,
|
229 |
+
dilation=dilation[2],
|
230 |
+
padding=get_padding(kernel_size, dilation[2])))
|
231 |
+
])
|
232 |
+
self.convs1.apply(init_weights)
|
233 |
+
|
234 |
+
self.convs2 = nn.ModuleList([
|
235 |
+
weight_norm(
|
236 |
+
Conv1d(channels,
|
237 |
+
channels,
|
238 |
+
kernel_size,
|
239 |
+
1,
|
240 |
+
dilation=1,
|
241 |
+
padding=get_padding(kernel_size, 1))),
|
242 |
+
weight_norm(
|
243 |
+
Conv1d(channels,
|
244 |
+
channels,
|
245 |
+
kernel_size,
|
246 |
+
1,
|
247 |
+
dilation=1,
|
248 |
+
padding=get_padding(kernel_size, 1))),
|
249 |
+
weight_norm(
|
250 |
+
Conv1d(channels,
|
251 |
+
channels,
|
252 |
+
kernel_size,
|
253 |
+
1,
|
254 |
+
dilation=1,
|
255 |
+
padding=get_padding(kernel_size, 1)))
|
256 |
+
])
|
257 |
+
self.convs2.apply(init_weights)
|
258 |
+
|
259 |
+
def forward(self, x, x_mask=None):
|
260 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
261 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
262 |
+
if x_mask is not None:
|
263 |
+
xt = xt * x_mask
|
264 |
+
xt = c1(xt)
|
265 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
266 |
+
if x_mask is not None:
|
267 |
+
xt = xt * x_mask
|
268 |
+
xt = c2(xt)
|
269 |
+
x = xt + x
|
270 |
+
if x_mask is not None:
|
271 |
+
x = x * x_mask
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.convs1:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.convs2:
|
278 |
+
remove_weight_norm(l)
|
279 |
+
|
280 |
+
|
281 |
+
class ResBlock2(torch.nn.Module):
|
282 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
283 |
+
super(ResBlock2, self).__init__()
|
284 |
+
self.convs = nn.ModuleList([
|
285 |
+
weight_norm(
|
286 |
+
Conv1d(channels,
|
287 |
+
channels,
|
288 |
+
kernel_size,
|
289 |
+
1,
|
290 |
+
dilation=dilation[0],
|
291 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
292 |
+
weight_norm(
|
293 |
+
Conv1d(channels,
|
294 |
+
channels,
|
295 |
+
kernel_size,
|
296 |
+
1,
|
297 |
+
dilation=dilation[1],
|
298 |
+
padding=get_padding(kernel_size, dilation[1])))
|
299 |
+
])
|
300 |
+
self.convs.apply(init_weights)
|
301 |
+
|
302 |
+
def forward(self, x, x_mask=None):
|
303 |
+
for c in self.convs:
|
304 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
305 |
+
if x_mask is not None:
|
306 |
+
xt = xt * x_mask
|
307 |
+
xt = c(xt)
|
308 |
+
x = xt + x
|
309 |
+
if x_mask is not None:
|
310 |
+
x = x * x_mask
|
311 |
+
return x
|
312 |
+
|
313 |
+
def remove_weight_norm(self):
|
314 |
+
for l in self.convs:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class Log(nn.Module):
|
319 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
320 |
+
if not reverse:
|
321 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
322 |
+
logdet = torch.sum(-y, [1, 2])
|
323 |
+
return y, logdet
|
324 |
+
else:
|
325 |
+
x = torch.exp(x) * x_mask
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
class Flip(nn.Module):
|
330 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
331 |
+
x = torch.flip(x, [1])
|
332 |
+
if not reverse:
|
333 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
334 |
+
return x, logdet
|
335 |
+
else:
|
336 |
+
return x
|
337 |
+
|
338 |
+
|
339 |
+
class ElementwiseAffine(nn.Module):
|
340 |
+
def __init__(self, channels):
|
341 |
+
super().__init__()
|
342 |
+
self.channels = channels
|
343 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
344 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
345 |
+
|
346 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
347 |
+
if not reverse:
|
348 |
+
y = self.m + torch.exp(self.logs) * x
|
349 |
+
y = y * x_mask
|
350 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
351 |
+
return y, logdet
|
352 |
+
else:
|
353 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
354 |
+
return x
|
355 |
+
|
356 |
+
|
357 |
+
class ResidualCouplingLayer(nn.Module):
|
358 |
+
def __init__(self,
|
359 |
+
channels,
|
360 |
+
hidden_channels,
|
361 |
+
kernel_size,
|
362 |
+
dilation_rate,
|
363 |
+
n_layers,
|
364 |
+
p_dropout=0,
|
365 |
+
gin_channels=0,
|
366 |
+
mean_only=False):
|
367 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
368 |
+
super().__init__()
|
369 |
+
self.channels = channels
|
370 |
+
self.hidden_channels = hidden_channels
|
371 |
+
self.kernel_size = kernel_size
|
372 |
+
self.dilation_rate = dilation_rate
|
373 |
+
self.n_layers = n_layers
|
374 |
+
self.half_channels = channels // 2
|
375 |
+
self.mean_only = mean_only
|
376 |
+
|
377 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
378 |
+
self.enc = WN(hidden_channels,
|
379 |
+
kernel_size,
|
380 |
+
dilation_rate,
|
381 |
+
n_layers,
|
382 |
+
p_dropout=p_dropout,
|
383 |
+
gin_channels=gin_channels)
|
384 |
+
self.post = nn.Conv1d(hidden_channels,
|
385 |
+
self.half_channels * (2 - mean_only), 1)
|
386 |
+
self.post.weight.data.zero_()
|
387 |
+
self.post.bias.data.zero_()
|
388 |
+
|
389 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
390 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
391 |
+
h = self.pre(x0) * x_mask
|
392 |
+
h = self.enc(h, x_mask, g=g)
|
393 |
+
stats = self.post(h) * x_mask
|
394 |
+
if not self.mean_only:
|
395 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
396 |
+
else:
|
397 |
+
m = stats
|
398 |
+
logs = torch.zeros_like(m)
|
399 |
+
|
400 |
+
if not reverse:
|
401 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
402 |
+
x = torch.cat([x0, x1], 1)
|
403 |
+
logdet = torch.sum(logs, [1, 2])
|
404 |
+
return x, logdet
|
405 |
+
else:
|
406 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
407 |
+
x = torch.cat([x0, x1], 1)
|
408 |
+
return x
|
409 |
+
|
410 |
+
|
411 |
+
class ConvFlow(nn.Module):
|
412 |
+
def __init__(self,
|
413 |
+
in_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
n_layers,
|
417 |
+
num_bins=10,
|
418 |
+
tail_bound=5.0):
|
419 |
+
super().__init__()
|
420 |
+
self.in_channels = in_channels
|
421 |
+
self.filter_channels = filter_channels
|
422 |
+
self.kernel_size = kernel_size
|
423 |
+
self.n_layers = n_layers
|
424 |
+
self.num_bins = num_bins
|
425 |
+
self.tail_bound = tail_bound
|
426 |
+
self.half_channels = in_channels // 2
|
427 |
+
|
428 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
429 |
+
self.convs = DDSConv(filter_channels,
|
430 |
+
kernel_size,
|
431 |
+
n_layers,
|
432 |
+
p_dropout=0.)
|
433 |
+
self.proj = nn.Conv1d(filter_channels,
|
434 |
+
self.half_channels * (num_bins * 3 - 1), 1)
|
435 |
+
self.proj.weight.data.zero_()
|
436 |
+
self.proj.bias.data.zero_()
|
437 |
+
|
438 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
439 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
440 |
+
h = self.pre(x0)
|
441 |
+
h = self.convs(h, x_mask, g=g)
|
442 |
+
h = self.proj(h) * x_mask
|
443 |
+
|
444 |
+
b, c, t = x0.shape
|
445 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3,
|
446 |
+
2) # [b, cx?, t] -> [b, c, t, ?]
|
447 |
+
|
448 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(
|
449 |
+
self.filter_channels)
|
450 |
+
unnormalized_heights = h[...,
|
451 |
+
self.num_bins:2 * self.num_bins] / math.sqrt(
|
452 |
+
self.filter_channels)
|
453 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
454 |
+
|
455 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
456 |
+
x1,
|
457 |
+
unnormalized_widths,
|
458 |
+
unnormalized_heights,
|
459 |
+
unnormalized_derivatives,
|
460 |
+
inverse=reverse,
|
461 |
+
tails='linear',
|
462 |
+
tail_bound=self.tail_bound)
|
463 |
+
|
464 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
465 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
466 |
+
if not reverse:
|
467 |
+
return x, logdet
|
468 |
+
else:
|
469 |
+
return x
|
export/vits/text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
export/vits/text/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
|
4 |
+
|
5 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
6 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
+
Args:
|
8 |
+
text: string to convert to a sequence
|
9 |
+
cleaner_names: names of the cleaner functions to run the text through
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
'''
|
13 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
+
|
15 |
+
sequence = []
|
16 |
+
|
17 |
+
clean_text = _clean_text(text, cleaner_names)
|
18 |
+
|
19 |
+
sequence = [
|
20 |
+
_symbol_to_id[symbol] for symbol in clean_text if symbol in _symbol_to_id.keys()
|
21 |
+
]
|
22 |
+
|
23 |
+
# for symbol in clean_text:
|
24 |
+
# if symbol not in _symbol_to_id.keys():
|
25 |
+
# continue
|
26 |
+
# symbol_id = _symbol_to_id[symbol]
|
27 |
+
# sequence += [symbol_id]
|
28 |
+
return sequence
|
29 |
+
|
30 |
+
|
31 |
+
def _clean_text(text, cleaner_names):
|
32 |
+
for name in cleaner_names:
|
33 |
+
cleaner = getattr(cleaners, name)
|
34 |
+
if not cleaner:
|
35 |
+
raise Exception('Unknown cleaner: %s' % name)
|
36 |
+
text = cleaner(text)
|
37 |
+
return text
|
export/vits/text/cleaners.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import pyopenjtalk
|
4 |
+
|
5 |
+
pyopenjtalk._lazy_init()
|
6 |
+
|
7 |
+
# Regular expression matching Japanese without punctuation marks:
|
8 |
+
_japanese_characters = re.compile(
|
9 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
10 |
+
|
11 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
12 |
+
_japanese_marks = re.compile(
|
13 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
14 |
+
|
15 |
+
|
16 |
+
def japanese_cleaners(text):
|
17 |
+
'''Pipeline for notating accent in Japanese text.'''
|
18 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
19 |
+
sentences = re.split(_japanese_marks, text)
|
20 |
+
marks = re.findall(_japanese_marks, text)
|
21 |
+
text = ''
|
22 |
+
for i, sentence in enumerate(sentences):
|
23 |
+
if re.match(_japanese_characters, sentence):
|
24 |
+
if text != '':
|
25 |
+
text += ' '
|
26 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
27 |
+
for n, label in enumerate(labels):
|
28 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
29 |
+
if phoneme not in ['sil', 'pau']:
|
30 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh', 'ʃ').replace('cl', 'Q')
|
31 |
+
else:
|
32 |
+
continue
|
33 |
+
n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
34 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
35 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
36 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
37 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
38 |
+
a2_next = -1
|
39 |
+
else:
|
40 |
+
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
41 |
+
# Accent phrase boundary
|
42 |
+
if a3 == 1 and a2_next == 1:
|
43 |
+
text += ' '
|
44 |
+
# Falling
|
45 |
+
elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras:
|
46 |
+
text += '↓'
|
47 |
+
# Rising
|
48 |
+
elif a2 == 1 and a2_next == 2:
|
49 |
+
text += '↑'
|
50 |
+
if i < len(marks):
|
51 |
+
text += unidecode(marks[i]).replace(' ', '')
|
52 |
+
if re.match('[A-Za-z]', text[-1]):
|
53 |
+
text += '.'
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
def japanese_cleaners2(text):
|
58 |
+
return japanese_cleaners(text).replace('ts','ʦ').replace('...','…')
|
export/vits/text/symbols.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Defines the set of symbols used in text input to the model.
|
3 |
+
'''
|
4 |
+
|
5 |
+
'''# japanese_cleaners
|
6 |
+
_pad = '_'
|
7 |
+
_punctuation = ',.!?-'
|
8 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
9 |
+
'''
|
10 |
+
# jp_cleaners
|
11 |
+
_pad = '_'
|
12 |
+
_punctuation = ',.!?-'
|
13 |
+
_letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# japanese_cleaners2
|
18 |
+
# _pad = '_'
|
19 |
+
# _punctuation = ',.!?-~…'
|
20 |
+
# _letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
|
21 |
+
|
22 |
+
|
23 |
+
'''# korean_cleaners
|
24 |
+
_pad = '_'
|
25 |
+
_punctuation = ',.!?…~'
|
26 |
+
_letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
|
27 |
+
'''
|
28 |
+
|
29 |
+
'''# chinese_cleaners
|
30 |
+
_pad = '_'
|
31 |
+
_punctuation = ',。!?—…'
|
32 |
+
_letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
|
33 |
+
'''
|
34 |
+
|
35 |
+
# Export all symbols:
|
36 |
+
symbols = [_pad] + list(_punctuation) + list(_letters)
|
37 |
+
|
38 |
+
# Special symbol ids
|
39 |
+
SPACE_ID = symbols.index(" ")
|
export/vits/train.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from torch.utils.tensorboard import SummaryWriter
|
7 |
+
import torch.multiprocessing as mp
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.cuda.amp import autocast, GradScaler
|
11 |
+
|
12 |
+
import commons
|
13 |
+
import utils
|
14 |
+
from data_utils import (TextAudioSpeakerLoader, TextAudioSpeakerCollate,
|
15 |
+
DistributedBucketSampler)
|
16 |
+
from models import (
|
17 |
+
SynthesizerTrn,
|
18 |
+
MultiPeriodDiscriminator,
|
19 |
+
)
|
20 |
+
from losses import (generator_loss, discriminator_loss, feature_loss, kl_loss)
|
21 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
22 |
+
|
23 |
+
torch.backends.cudnn.benchmark = True
|
24 |
+
global_step = 0
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
29 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
30 |
+
|
31 |
+
n_gpus = torch.cuda.device_count()
|
32 |
+
hps = utils.get_hparams()
|
33 |
+
mp.spawn(run, nprocs=n_gpus, args=(
|
34 |
+
n_gpus,
|
35 |
+
hps,
|
36 |
+
))
|
37 |
+
|
38 |
+
|
39 |
+
def run(rank, n_gpus, hps):
|
40 |
+
global global_step
|
41 |
+
if rank == 0:
|
42 |
+
logger = utils.get_logger(hps.model_dir)
|
43 |
+
logger.info(hps)
|
44 |
+
utils.check_git_hash(hps.model_dir)
|
45 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
46 |
+
writer_eval = SummaryWriter(
|
47 |
+
log_dir=os.path.join(hps.model_dir, "eval"))
|
48 |
+
|
49 |
+
dist.init_process_group(backend='nccl',
|
50 |
+
init_method='env://',
|
51 |
+
world_size=n_gpus,
|
52 |
+
rank=rank)
|
53 |
+
torch.manual_seed(hps.train.seed)
|
54 |
+
torch.cuda.set_device(rank)
|
55 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
56 |
+
train_sampler = DistributedBucketSampler(
|
57 |
+
train_dataset,
|
58 |
+
hps.train.batch_size, [32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
59 |
+
num_replicas=n_gpus,
|
60 |
+
rank=rank,
|
61 |
+
shuffle=True)
|
62 |
+
collate_fn = TextAudioSpeakerCollate()
|
63 |
+
train_loader = DataLoader(train_dataset,
|
64 |
+
num_workers=8,
|
65 |
+
shuffle=False,
|
66 |
+
pin_memory=True,
|
67 |
+
collate_fn=collate_fn,
|
68 |
+
batch_sampler=train_sampler)
|
69 |
+
if rank == 0:
|
70 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files,
|
71 |
+
hps.data)
|
72 |
+
eval_loader = DataLoader(eval_dataset,
|
73 |
+
num_workers=8,
|
74 |
+
shuffle=False,
|
75 |
+
batch_size=hps.train.batch_size,
|
76 |
+
pin_memory=True,
|
77 |
+
drop_last=False,
|
78 |
+
collate_fn=collate_fn)
|
79 |
+
|
80 |
+
net_g = SynthesizerTrn(hps.data.num_phones,
|
81 |
+
hps.data.filter_length // 2 + 1,
|
82 |
+
hps.train.segment_size // hps.data.hop_length,
|
83 |
+
n_speakers=hps.data.n_speakers,
|
84 |
+
**hps.model).cuda(rank)
|
85 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
86 |
+
optim_g = torch.optim.AdamW(net_g.parameters(),
|
87 |
+
hps.train.learning_rate,
|
88 |
+
betas=hps.train.betas,
|
89 |
+
eps=hps.train.eps)
|
90 |
+
optim_d = torch.optim.AdamW(net_d.parameters(),
|
91 |
+
hps.train.learning_rate,
|
92 |
+
betas=hps.train.betas,
|
93 |
+
eps=hps.train.eps)
|
94 |
+
net_g = DDP(net_g, device_ids=[rank])
|
95 |
+
net_d = DDP(net_d, device_ids=[rank])
|
96 |
+
|
97 |
+
try:
|
98 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
99 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
|
100 |
+
optim_g)
|
101 |
+
_, _, _, epoch_str = utils.load_checkpoint(
|
102 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
|
103 |
+
optim_d)
|
104 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
105 |
+
except Exception as e:
|
106 |
+
epoch_str = 1
|
107 |
+
global_step = 0
|
108 |
+
|
109 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
110 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
111 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
112 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
113 |
+
|
114 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
115 |
+
|
116 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
117 |
+
if rank == 0:
|
118 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
|
119 |
+
[optim_g, optim_d], [scheduler_g, scheduler_d],
|
120 |
+
scaler, [train_loader, eval_loader], logger,
|
121 |
+
[writer, writer_eval])
|
122 |
+
else:
|
123 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d],
|
124 |
+
[optim_g, optim_d], [scheduler_g, scheduler_d],
|
125 |
+
scaler, [train_loader, None], None, None)
|
126 |
+
scheduler_g.step()
|
127 |
+
scheduler_d.step()
|
128 |
+
|
129 |
+
|
130 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler,
|
131 |
+
loaders, logger, writers):
|
132 |
+
net_g, net_d = nets
|
133 |
+
optim_g, optim_d = optims
|
134 |
+
scheduler_g, scheduler_d = schedulers
|
135 |
+
train_loader, eval_loader = loaders
|
136 |
+
if writers is not None:
|
137 |
+
writer, writer_eval = writers
|
138 |
+
|
139 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
140 |
+
global global_step
|
141 |
+
|
142 |
+
net_g.train()
|
143 |
+
net_d.train()
|
144 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
|
145 |
+
speakers) in enumerate(train_loader):
|
146 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
147 |
+
rank, non_blocking=True)
|
148 |
+
spec, spec_lengths = spec.cuda(
|
149 |
+
rank, non_blocking=True), spec_lengths.cuda(rank,
|
150 |
+
non_blocking=True)
|
151 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
152 |
+
rank, non_blocking=True)
|
153 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
154 |
+
|
155 |
+
with autocast(enabled=hps.train.fp16_run):
|
156 |
+
y_hat, l_length, attn, ids_slice, x_mask, z_mask, (
|
157 |
+
z, z_p, m_p, logs_p, m_q,
|
158 |
+
logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
159 |
+
|
160 |
+
mel = spec_to_mel_torch(spec, hps.data.filter_length,
|
161 |
+
hps.data.n_mel_channels,
|
162 |
+
hps.data.sampling_rate, hps.data.mel_fmin,
|
163 |
+
hps.data.mel_fmax)
|
164 |
+
y_mel = commons.slice_segments(
|
165 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
166 |
+
y_hat_mel = mel_spectrogram_torch(
|
167 |
+
y_hat.squeeze(1), hps.data.filter_length,
|
168 |
+
hps.data.n_mel_channels, hps.data.sampling_rate,
|
169 |
+
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
|
170 |
+
hps.data.mel_fmax)
|
171 |
+
|
172 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length,
|
173 |
+
hps.train.segment_size) # slice
|
174 |
+
|
175 |
+
# Discriminator
|
176 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
177 |
+
with autocast(enabled=False):
|
178 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
179 |
+
y_d_hat_r, y_d_hat_g)
|
180 |
+
loss_disc_all = loss_disc
|
181 |
+
optim_d.zero_grad()
|
182 |
+
scaler.scale(loss_disc_all).backward()
|
183 |
+
scaler.unscale_(optim_d)
|
184 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
185 |
+
scaler.step(optim_d)
|
186 |
+
|
187 |
+
with autocast(enabled=hps.train.fp16_run):
|
188 |
+
# Generator
|
189 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
190 |
+
with autocast(enabled=False):
|
191 |
+
loss_dur = torch.sum(l_length.float())
|
192 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
193 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p,
|
194 |
+
z_mask) * hps.train.c_kl
|
195 |
+
|
196 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
197 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
198 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
199 |
+
optim_g.zero_grad()
|
200 |
+
scaler.scale(loss_gen_all).backward()
|
201 |
+
scaler.unscale_(optim_g)
|
202 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
203 |
+
scaler.step(optim_g)
|
204 |
+
scaler.update()
|
205 |
+
|
206 |
+
if rank == 0:
|
207 |
+
if global_step % hps.train.log_interval == 0:
|
208 |
+
lr = optim_g.param_groups[0]['lr']
|
209 |
+
losses = [
|
210 |
+
loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl
|
211 |
+
]
|
212 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
213 |
+
epoch, 100. * batch_idx / len(train_loader)))
|
214 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
215 |
+
|
216 |
+
scalar_dict = {
|
217 |
+
"loss/g/total": loss_gen_all,
|
218 |
+
"loss/d/total": loss_disc_all,
|
219 |
+
"learning_rate": lr,
|
220 |
+
"grad_norm_d": grad_norm_d,
|
221 |
+
"grad_norm_g": grad_norm_g
|
222 |
+
}
|
223 |
+
scalar_dict.update({
|
224 |
+
"loss/g/fm": loss_fm,
|
225 |
+
"loss/g/mel": loss_mel,
|
226 |
+
"loss/g/dur": loss_dur,
|
227 |
+
"loss/g/kl": loss_kl
|
228 |
+
})
|
229 |
+
|
230 |
+
scalar_dict.update({
|
231 |
+
"loss/g/{}".format(i): v
|
232 |
+
for i, v in enumerate(losses_gen)
|
233 |
+
})
|
234 |
+
scalar_dict.update({
|
235 |
+
"loss/d_r/{}".format(i): v
|
236 |
+
for i, v in enumerate(losses_disc_r)
|
237 |
+
})
|
238 |
+
scalar_dict.update({
|
239 |
+
"loss/d_g/{}".format(i): v
|
240 |
+
for i, v in enumerate(losses_disc_g)
|
241 |
+
})
|
242 |
+
image_dict = {
|
243 |
+
"slice/mel_org":
|
244 |
+
utils.plot_spectrogram_to_numpy(
|
245 |
+
y_mel[0].data.cpu().numpy()),
|
246 |
+
"slice/mel_gen":
|
247 |
+
utils.plot_spectrogram_to_numpy(
|
248 |
+
y_hat_mel[0].data.cpu().numpy()),
|
249 |
+
"all/mel":
|
250 |
+
utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
251 |
+
"all/attn":
|
252 |
+
utils.plot_alignment_to_numpy(attn[0,
|
253 |
+
0].data.cpu().numpy())
|
254 |
+
}
|
255 |
+
utils.summarize(writer=writer,
|
256 |
+
global_step=global_step,
|
257 |
+
images=image_dict,
|
258 |
+
scalars=scalar_dict)
|
259 |
+
|
260 |
+
if global_step % hps.train.eval_interval == 0:
|
261 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
262 |
+
utils.save_checkpoint(
|
263 |
+
net_g, optim_g, hps.train.learning_rate, epoch,
|
264 |
+
os.path.join(hps.model_dir,
|
265 |
+
"G_{}.pth".format(global_step)))
|
266 |
+
utils.save_checkpoint(
|
267 |
+
net_d, optim_d, hps.train.learning_rate, epoch,
|
268 |
+
os.path.join(hps.model_dir,
|
269 |
+
"D_{}.pth".format(global_step)))
|
270 |
+
global_step += 1
|
271 |
+
|
272 |
+
if rank == 0:
|
273 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
274 |
+
|
275 |
+
|
276 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
277 |
+
generator.eval()
|
278 |
+
with torch.no_grad():
|
279 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths,
|
280 |
+
speakers) in enumerate(eval_loader):
|
281 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
282 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
283 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
284 |
+
speakers = speakers.cuda(0)
|
285 |
+
|
286 |
+
# remove else
|
287 |
+
x = x[:1]
|
288 |
+
x_lengths = x_lengths[:1]
|
289 |
+
spec = spec[:1]
|
290 |
+
spec_lengths = spec_lengths[:1]
|
291 |
+
y = y[:1]
|
292 |
+
y_lengths = y_lengths[:1]
|
293 |
+
speakers = speakers[:1]
|
294 |
+
break
|
295 |
+
y_hat, attn, mask, *_ = generator.module.infer(x,
|
296 |
+
x_lengths,
|
297 |
+
speakers,
|
298 |
+
max_len=1000)
|
299 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
300 |
+
|
301 |
+
mel = spec_to_mel_torch(spec, hps.data.filter_length,
|
302 |
+
hps.data.n_mel_channels,
|
303 |
+
hps.data.sampling_rate, hps.data.mel_fmin,
|
304 |
+
hps.data.mel_fmax)
|
305 |
+
y_hat_mel = mel_spectrogram_torch(
|
306 |
+
y_hat.squeeze(1).float(), hps.data.filter_length,
|
307 |
+
hps.data.n_mel_channels, hps.data.sampling_rate,
|
308 |
+
hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin,
|
309 |
+
hps.data.mel_fmax)
|
310 |
+
image_dict = {
|
311 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
312 |
+
}
|
313 |
+
audio_dict = {"gen/audio": y_hat[0, :, :y_hat_lengths[0]]}
|
314 |
+
if global_step == 0:
|
315 |
+
image_dict.update(
|
316 |
+
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
317 |
+
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
|
318 |
+
|
319 |
+
utils.summarize(writer=writer_eval,
|
320 |
+
global_step=global_step,
|
321 |
+
images=image_dict,
|
322 |
+
audios=audio_dict,
|
323 |
+
audio_sampling_rate=hps.data.sampling_rate)
|
324 |
+
generator.train()
|
325 |
+
|
326 |
+
|
327 |
+
if __name__ == "__main__":
|
328 |
+
main()
|
export/vits/transforms.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
6 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
7 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
8 |
+
|
9 |
+
|
10 |
+
def piecewise_rational_quadratic_transform(
|
11 |
+
inputs,
|
12 |
+
unnormalized_widths,
|
13 |
+
unnormalized_heights,
|
14 |
+
unnormalized_derivatives,
|
15 |
+
inverse=False,
|
16 |
+
tails=None,
|
17 |
+
tail_bound=1.,
|
18 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
19 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
20 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
21 |
+
|
22 |
+
if tails is None:
|
23 |
+
spline_fn = rational_quadratic_spline
|
24 |
+
spline_kwargs = {}
|
25 |
+
else:
|
26 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
27 |
+
spline_kwargs = {'tails': tails, 'tail_bound': tail_bound}
|
28 |
+
|
29 |
+
outputs, logabsdet = spline_fn(
|
30 |
+
inputs=inputs,
|
31 |
+
unnormalized_widths=unnormalized_widths,
|
32 |
+
unnormalized_heights=unnormalized_heights,
|
33 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
34 |
+
inverse=inverse,
|
35 |
+
min_bin_width=min_bin_width,
|
36 |
+
min_bin_height=min_bin_height,
|
37 |
+
min_derivative=min_derivative,
|
38 |
+
**spline_kwargs)
|
39 |
+
return outputs, logabsdet
|
40 |
+
|
41 |
+
|
42 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
43 |
+
bin_locations[..., bin_locations.size(-1) - 1] += eps
|
44 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
45 |
+
|
46 |
+
|
47 |
+
def unconstrained_rational_quadratic_spline(
|
48 |
+
inputs,
|
49 |
+
unnormalized_widths,
|
50 |
+
unnormalized_heights,
|
51 |
+
unnormalized_derivatives,
|
52 |
+
inverse=False,
|
53 |
+
tails='linear',
|
54 |
+
tail_bound=1.,
|
55 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
56 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
57 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
58 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
59 |
+
outside_interval_mask = ~inside_interval_mask
|
60 |
+
|
61 |
+
outputs = torch.zeros_like(inputs)
|
62 |
+
logabsdet = torch.zeros_like(inputs)
|
63 |
+
|
64 |
+
if tails == 'linear':
|
65 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
66 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
67 |
+
unnormalized_derivatives[..., 0] = constant
|
68 |
+
unnormalized_derivatives[..., unnormalized_derivatives.size(-1) - 1] = constant
|
69 |
+
|
70 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
71 |
+
logabsdet[outside_interval_mask] = 0
|
72 |
+
else:
|
73 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
74 |
+
|
75 |
+
outputs[inside_interval_mask], logabsdet[
|
76 |
+
inside_interval_mask] = rational_quadratic_spline(
|
77 |
+
inputs=inputs[inside_interval_mask],
|
78 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
79 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
80 |
+
unnormalized_derivatives=unnormalized_derivatives[
|
81 |
+
inside_interval_mask, :],
|
82 |
+
inverse=inverse,
|
83 |
+
left=-tail_bound,
|
84 |
+
right=tail_bound,
|
85 |
+
bottom=-tail_bound,
|
86 |
+
top=tail_bound,
|
87 |
+
min_bin_width=min_bin_width,
|
88 |
+
min_bin_height=min_bin_height,
|
89 |
+
min_derivative=min_derivative)
|
90 |
+
|
91 |
+
return outputs, logabsdet
|
92 |
+
|
93 |
+
|
94 |
+
def rational_quadratic_spline(inputs,
|
95 |
+
unnormalized_widths,
|
96 |
+
unnormalized_heights,
|
97 |
+
unnormalized_derivatives,
|
98 |
+
inverse=False,
|
99 |
+
left=0.,
|
100 |
+
right=1.,
|
101 |
+
bottom=0.,
|
102 |
+
top=1.,
|
103 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
104 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
105 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
106 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
107 |
+
raise ValueError('Input to a transform is not within its domain')
|
108 |
+
|
109 |
+
num_bins = unnormalized_widths.shape[-1]
|
110 |
+
|
111 |
+
if min_bin_width * num_bins > 1.0:
|
112 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
113 |
+
if min_bin_height * num_bins > 1.0:
|
114 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
115 |
+
|
116 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
117 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
118 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
119 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
120 |
+
cumwidths = (right - left) * cumwidths + left
|
121 |
+
cumwidths[..., 0] = left
|
122 |
+
cumwidths[..., cumwidths.size(-1) - 1] = right
|
123 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
124 |
+
|
125 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
126 |
+
|
127 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
128 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
129 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
130 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
131 |
+
cumheights = (top - bottom) * cumheights + bottom
|
132 |
+
cumheights[..., 0] = bottom
|
133 |
+
cumheights[..., cumheights.size(-1) - 1] = top
|
134 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
135 |
+
|
136 |
+
if inverse:
|
137 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
138 |
+
else:
|
139 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
140 |
+
|
141 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
142 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
143 |
+
|
144 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
145 |
+
delta = heights / widths
|
146 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
147 |
+
|
148 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
149 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[...,
|
150 |
+
0]
|
151 |
+
|
152 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
153 |
+
|
154 |
+
if inverse:
|
155 |
+
a = (
|
156 |
+
((inputs - input_cumheights) *
|
157 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
158 |
+
+ input_heights * (input_delta - input_derivatives)))
|
159 |
+
b = (
|
160 |
+
input_heights * input_derivatives - (inputs - input_cumheights) *
|
161 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta))
|
162 |
+
c = -input_delta * (inputs - input_cumheights)
|
163 |
+
|
164 |
+
discriminant = b.pow(2) - 4 * a * c
|
165 |
+
assert (discriminant >= 0).all()
|
166 |
+
|
167 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
168 |
+
outputs = root * input_bin_widths + input_cumwidths
|
169 |
+
|
170 |
+
theta_one_minus_theta = root * (1 - root)
|
171 |
+
denominator = input_delta + (
|
172 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
173 |
+
* theta_one_minus_theta)
|
174 |
+
derivative_numerator = input_delta.pow(2) * (
|
175 |
+
input_derivatives_plus_one * root.pow(2) +
|
176 |
+
2 * input_delta * theta_one_minus_theta + input_derivatives *
|
177 |
+
(1 - root).pow(2))
|
178 |
+
logabsdet = torch.log(
|
179 |
+
derivative_numerator) - 2 * torch.log(denominator)
|
180 |
+
|
181 |
+
return outputs, -logabsdet
|
182 |
+
else:
|
183 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
184 |
+
theta_one_minus_theta = theta * (1 - theta)
|
185 |
+
|
186 |
+
numerator = input_heights * (input_delta * theta.pow(2) +
|
187 |
+
input_derivatives * theta_one_minus_theta)
|
188 |
+
denominator = input_delta + (
|
189 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
190 |
+
* theta_one_minus_theta)
|
191 |
+
outputs = input_cumheights + numerator / denominator
|
192 |
+
|
193 |
+
derivative_numerator = input_delta.pow(2) * (
|
194 |
+
input_derivatives_plus_one * theta.pow(2) +
|
195 |
+
2 * input_delta * theta_one_minus_theta + input_derivatives *
|
196 |
+
(1 - theta).pow(2))
|
197 |
+
logabsdet = torch.log(
|
198 |
+
derivative_numerator) - 2 * torch.log(denominator)
|
199 |
+
|
200 |
+
return outputs, logabsdet
|
export/vits/utils.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.io.wavfile import read
|
11 |
+
import torch
|
12 |
+
|
13 |
+
MATPLOTLIB_FLAG = False
|
14 |
+
|
15 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
16 |
+
logger = logging
|
17 |
+
|
18 |
+
|
19 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
20 |
+
assert os.path.isfile(checkpoint_path)
|
21 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
22 |
+
iteration = checkpoint_dict['iteration']
|
23 |
+
learning_rate = checkpoint_dict['learning_rate']
|
24 |
+
if optimizer is not None:
|
25 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
26 |
+
saved_state_dict = checkpoint_dict['model']
|
27 |
+
if hasattr(model, 'module'):
|
28 |
+
state_dict = model.module.state_dict()
|
29 |
+
else:
|
30 |
+
state_dict = model.state_dict()
|
31 |
+
new_state_dict = {}
|
32 |
+
for k, v in state_dict.items():
|
33 |
+
try:
|
34 |
+
new_state_dict[k] = saved_state_dict[k]
|
35 |
+
except Exception as e:
|
36 |
+
logger.info("%s is not in the checkpoint" % k)
|
37 |
+
new_state_dict[k] = v
|
38 |
+
if hasattr(model, 'module'):
|
39 |
+
model.module.load_state_dict(new_state_dict)
|
40 |
+
else:
|
41 |
+
model.load_state_dict(new_state_dict)
|
42 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
43 |
+
checkpoint_path, iteration))
|
44 |
+
return model, optimizer, learning_rate, iteration
|
45 |
+
|
46 |
+
|
47 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration,
|
48 |
+
checkpoint_path):
|
49 |
+
logger.info(
|
50 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
51 |
+
iteration, checkpoint_path))
|
52 |
+
if hasattr(model, 'module'):
|
53 |
+
state_dict = model.module.state_dict()
|
54 |
+
else:
|
55 |
+
state_dict = model.state_dict()
|
56 |
+
torch.save(
|
57 |
+
{
|
58 |
+
'model': state_dict,
|
59 |
+
'iteration': iteration,
|
60 |
+
'optimizer': optimizer.state_dict(),
|
61 |
+
'learning_rate': learning_rate
|
62 |
+
}, checkpoint_path)
|
63 |
+
|
64 |
+
|
65 |
+
def summarize(
|
66 |
+
writer,
|
67 |
+
global_step,
|
68 |
+
scalars={}, # noqa
|
69 |
+
histograms={}, # noqa
|
70 |
+
images={}, # noqa
|
71 |
+
audios={}, # noqa
|
72 |
+
audio_sampling_rate=22050):
|
73 |
+
for k, v in scalars.items():
|
74 |
+
writer.add_scalar(k, v, global_step)
|
75 |
+
for k, v in histograms.items():
|
76 |
+
writer.add_histogram(k, v, global_step)
|
77 |
+
for k, v in images.items():
|
78 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
79 |
+
for k, v in audios.items():
|
80 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
81 |
+
|
82 |
+
|
83 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
84 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
85 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
86 |
+
x = f_list[-1]
|
87 |
+
print(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
92 |
+
global MATPLOTLIB_FLAG
|
93 |
+
if not MATPLOTLIB_FLAG:
|
94 |
+
import matplotlib
|
95 |
+
matplotlib.use("Agg")
|
96 |
+
MATPLOTLIB_FLAG = True
|
97 |
+
mpl_logger = logging.getLogger('matplotlib')
|
98 |
+
mpl_logger.setLevel(logging.WARNING)
|
99 |
+
import matplotlib.pylab as plt
|
100 |
+
import numpy as np
|
101 |
+
|
102 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
103 |
+
im = ax.imshow(spectrogram,
|
104 |
+
aspect="auto",
|
105 |
+
origin="lower",
|
106 |
+
interpolation='none')
|
107 |
+
plt.colorbar(im, ax=ax)
|
108 |
+
plt.xlabel("Frames")
|
109 |
+
plt.ylabel("Channels")
|
110 |
+
plt.tight_layout()
|
111 |
+
|
112 |
+
fig.canvas.draw()
|
113 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
114 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
115 |
+
plt.close()
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
120 |
+
global MATPLOTLIB_FLAG
|
121 |
+
if not MATPLOTLIB_FLAG:
|
122 |
+
import matplotlib
|
123 |
+
matplotlib.use("Agg")
|
124 |
+
MATPLOTLIB_FLAG = True
|
125 |
+
mpl_logger = logging.getLogger('matplotlib')
|
126 |
+
mpl_logger.setLevel(logging.WARNING)
|
127 |
+
import matplotlib.pylab as plt
|
128 |
+
import numpy as np
|
129 |
+
|
130 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
131 |
+
im = ax.imshow(alignment.transpose(),
|
132 |
+
aspect='auto',
|
133 |
+
origin='lower',
|
134 |
+
interpolation='none')
|
135 |
+
fig.colorbar(im, ax=ax)
|
136 |
+
xlabel = 'Decoder timestep'
|
137 |
+
if info is not None:
|
138 |
+
xlabel += '\n\n' + info
|
139 |
+
plt.xlabel(xlabel)
|
140 |
+
plt.ylabel('Encoder timestep')
|
141 |
+
plt.tight_layout()
|
142 |
+
|
143 |
+
fig.canvas.draw()
|
144 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
145 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
146 |
+
plt.close()
|
147 |
+
return data
|
148 |
+
|
149 |
+
|
150 |
+
def load_wav_to_torch(full_path):
|
151 |
+
sampling_rate, data = read(full_path)
|
152 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
153 |
+
|
154 |
+
|
155 |
+
def load_filepaths_and_text(filename, split="|"):
|
156 |
+
with open(filename, encoding='utf-8') as f:
|
157 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
158 |
+
return filepaths_and_text
|
159 |
+
|
160 |
+
|
161 |
+
def get_hparams(init=True):
|
162 |
+
parser = argparse.ArgumentParser()
|
163 |
+
parser.add_argument('-c',
|
164 |
+
'--config',
|
165 |
+
type=str,
|
166 |
+
default="./configs/base.json",
|
167 |
+
help='JSON file for configuration')
|
168 |
+
parser.add_argument('-m',
|
169 |
+
'--model',
|
170 |
+
type=str,
|
171 |
+
required=True,
|
172 |
+
help='Model name')
|
173 |
+
parser.add_argument('--train_data',
|
174 |
+
type=str,
|
175 |
+
required=True,
|
176 |
+
help='train data')
|
177 |
+
parser.add_argument('--val_data', type=str, required=True, help='val data')
|
178 |
+
parser.add_argument('--phone_table',
|
179 |
+
type=str,
|
180 |
+
required=True,
|
181 |
+
help='phone table')
|
182 |
+
parser.add_argument('--speaker_table',
|
183 |
+
type=str,
|
184 |
+
default=None,
|
185 |
+
help='speaker table, required for multiple speakers')
|
186 |
+
|
187 |
+
args = parser.parse_args()
|
188 |
+
model_dir = args.model
|
189 |
+
|
190 |
+
if not os.path.exists(model_dir):
|
191 |
+
os.makedirs(model_dir)
|
192 |
+
|
193 |
+
config_path = args.config
|
194 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
195 |
+
if init:
|
196 |
+
with open(config_path, "r", encoding='utf8') as f:
|
197 |
+
data = f.read()
|
198 |
+
with open(config_save_path, "w", encoding='utf8') as f:
|
199 |
+
f.write(data)
|
200 |
+
else:
|
201 |
+
with open(config_save_path, "r", encoding='utf8') as f:
|
202 |
+
data = f.read()
|
203 |
+
config = json.loads(data)
|
204 |
+
config['data']['training_files'] = args.train_data
|
205 |
+
config['data']['validation_files'] = args.val_data
|
206 |
+
config['data']['phone_table'] = args.phone_table
|
207 |
+
# 0 is kept for blank
|
208 |
+
config['data']['num_phones'] = len(open(args.phone_table).readlines()) + 1
|
209 |
+
if args.speaker_table is not None:
|
210 |
+
config['data']['speaker_table'] = args.speaker_table
|
211 |
+
# 0 is kept for unknown speaker
|
212 |
+
config['data']['n_speakers'] = len(
|
213 |
+
open(args.speaker_table).readlines()) + 1
|
214 |
+
else:
|
215 |
+
config['data']['n_speakers'] = 0
|
216 |
+
|
217 |
+
hparams = HParams(**config)
|
218 |
+
hparams.model_dir = model_dir
|
219 |
+
return hparams
|
220 |
+
|
221 |
+
|
222 |
+
def get_hparams_from_dir(model_dir):
|
223 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
224 |
+
with open(config_save_path, "r") as f:
|
225 |
+
data = f.read()
|
226 |
+
config = json.loads(data)
|
227 |
+
|
228 |
+
hparams = HParams(**config)
|
229 |
+
hparams.model_dir = model_dir
|
230 |
+
return hparams
|
231 |
+
|
232 |
+
|
233 |
+
def get_hparams_from_file(config_path):
|
234 |
+
with open(config_path, "r") as f:
|
235 |
+
data = f.read()
|
236 |
+
config = json.loads(data)
|
237 |
+
|
238 |
+
hparams = HParams(**config)
|
239 |
+
return hparams
|
240 |
+
|
241 |
+
|
242 |
+
def check_git_hash(model_dir):
|
243 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
244 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
245 |
+
logger.warn('''{} is not a git repository, therefore hash value
|
246 |
+
comparison will be ignored.'''.format(source_dir))
|
247 |
+
return
|
248 |
+
|
249 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
250 |
+
|
251 |
+
path = os.path.join(model_dir, "githash")
|
252 |
+
if os.path.exists(path):
|
253 |
+
saved_hash = open(path).read()
|
254 |
+
if saved_hash != cur_hash:
|
255 |
+
logger.warn(
|
256 |
+
"git hash values are different. {}(saved) != {}(current)".
|
257 |
+
format(saved_hash[:8], cur_hash[:8]))
|
258 |
+
else:
|
259 |
+
open(path, "w").write(cur_hash)
|
260 |
+
|
261 |
+
|
262 |
+
def get_logger(model_dir, filename="train.log"):
|
263 |
+
global logger
|
264 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
265 |
+
logger.setLevel(logging.INFO)
|
266 |
+
|
267 |
+
formatter = logging.Formatter(
|
268 |
+
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
269 |
+
if not os.path.exists(model_dir):
|
270 |
+
os.makedirs(model_dir)
|
271 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
272 |
+
h.setLevel(logging.INFO)
|
273 |
+
h.setFormatter(formatter)
|
274 |
+
logger.addHandler(h)
|
275 |
+
return logger
|
276 |
+
|
277 |
+
|
278 |
+
class HParams():
|
279 |
+
def __init__(self, **kwargs):
|
280 |
+
for k, v in kwargs.items():
|
281 |
+
if type(v) == dict:
|
282 |
+
v = HParams(**v)
|
283 |
+
self[k] = v
|
284 |
+
|
285 |
+
def keys(self):
|
286 |
+
return self.__dict__.keys()
|
287 |
+
|
288 |
+
def items(self):
|
289 |
+
return self.__dict__.items()
|
290 |
+
|
291 |
+
def values(self):
|
292 |
+
return self.__dict__.values()
|
293 |
+
|
294 |
+
def __len__(self):
|
295 |
+
return len(self.__dict__)
|
296 |
+
|
297 |
+
def __getitem__(self, key):
|
298 |
+
return getattr(self, key)
|
299 |
+
|
300 |
+
def __setitem__(self, key, value):
|
301 |
+
return setattr(self, key, value)
|
302 |
+
|
303 |
+
def __contains__(self, key):
|
304 |
+
return key in self.__dict__
|
305 |
+
|
306 |
+
def __repr__(self):
|
307 |
+
return self.__dict__.__repr__()
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "vits-onnx"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["ccds <ccdesue@163.com>"]
|
6 |
+
readme = "README.md"
|
7 |
+
packages = [{include = "vits_onnx"}]
|
8 |
+
|
9 |
+
[tool.poetry.dependencies]
|
10 |
+
python = "^3.9"
|
11 |
+
gradio = "^3.16.1"
|
12 |
+
loguru = "^0.6.0"
|
13 |
+
onnxruntime = "^1.13.1"
|
14 |
+
pyopenjtalk = "^0.3.0"
|
15 |
+
unidecode = "^1.3.6"
|
16 |
+
|
17 |
+
|
18 |
+
[build-system]
|
19 |
+
requires = ["poetry-core"]
|
20 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.8.3 ; python_version >= "3.9" and python_version < "4.0"
|
2 |
+
aiosignal==1.3.1 ; python_version >= "3.9" and python_version < "4.0"
|
3 |
+
altair==4.2.0 ; python_version >= "3.9" and python_version < "4.0"
|
4 |
+
anyio==3.6.2 ; python_version >= "3.9" and python_version < "4.0"
|
5 |
+
async-timeout==4.0.2 ; python_version >= "3.9" and python_version < "4.0"
|
6 |
+
attrs==22.2.0 ; python_version >= "3.9" and python_version < "4.0"
|
7 |
+
certifi==2022.12.7 ; python_version >= "3.9" and python_version < "4.0"
|
8 |
+
charset-normalizer==2.1.1 ; python_version >= "3.9" and python_version < "4.0"
|
9 |
+
click==8.1.3 ; python_version >= "3.9" and python_version < "4.0"
|
10 |
+
colorama==0.4.6 ; python_version >= "3.9" and python_version < "4.0" and sys_platform == "win32" or python_version >= "3.9" and python_version < "4.0" and platform_system == "Windows"
|
11 |
+
coloredlogs==15.0.1 ; python_version >= "3.9" and python_version < "4.0"
|
12 |
+
contourpy==1.0.6 ; python_version >= "3.9" and python_version < "4.0"
|
13 |
+
cycler==0.11.0 ; python_version >= "3.9" and python_version < "4.0"
|
14 |
+
cython==0.29.33 ; python_version >= "3.9" and python_version < "4.0"
|
15 |
+
entrypoints==0.4 ; python_version >= "3.9" and python_version < "4.0"
|
16 |
+
fastapi==0.89.0 ; python_version >= "3.9" and python_version < "4.0"
|
17 |
+
ffmpy==0.3.0 ; python_version >= "3.9" and python_version < "4.0"
|
18 |
+
flatbuffers==23.1.4 ; python_version >= "3.9" and python_version < "4.0"
|
19 |
+
fonttools==4.38.0 ; python_version >= "3.9" and python_version < "4.0"
|
20 |
+
frozenlist==1.3.3 ; python_version >= "3.9" and python_version < "4.0"
|
21 |
+
fsspec==2022.11.0 ; python_version >= "3.9" and python_version < "4.0"
|
22 |
+
gradio==3.16.1 ; python_version >= "3.9" and python_version < "4.0"
|
23 |
+
h11==0.14.0 ; python_version >= "3.9" and python_version < "4.0"
|
24 |
+
httpcore==0.16.3 ; python_version >= "3.9" and python_version < "4.0"
|
25 |
+
httpx==0.23.3 ; python_version >= "3.9" and python_version < "4.0"
|
26 |
+
humanfriendly==10.0 ; python_version >= "3.9" and python_version < "4.0"
|
27 |
+
idna==3.4 ; python_version >= "3.9" and python_version < "4"
|
28 |
+
jinja2==3.1.2 ; python_version >= "3.9" and python_version < "4.0"
|
29 |
+
jsonschema==4.17.3 ; python_version >= "3.9" and python_version < "4.0"
|
30 |
+
kiwisolver==1.4.4 ; python_version >= "3.9" and python_version < "4.0"
|
31 |
+
linkify-it-py==1.0.3 ; python_version >= "3.9" and python_version < "4.0"
|
32 |
+
loguru==0.6.0 ; python_version >= "3.9" and python_version < "4.0"
|
33 |
+
markdown-it-py==2.1.0 ; python_version >= "3.9" and python_version < "4.0"
|
34 |
+
markdown-it-py[linkify,plugins]==2.1.0 ; python_version >= "3.9" and python_version < "4.0"
|
35 |
+
markupsafe==2.1.1 ; python_version >= "3.9" and python_version < "4.0"
|
36 |
+
matplotlib==3.6.2 ; python_version >= "3.9" and python_version < "4.0"
|
37 |
+
mdit-py-plugins==0.3.3 ; python_version >= "3.9" and python_version < "4.0"
|
38 |
+
mdurl==0.1.2 ; python_version >= "3.9" and python_version < "4.0"
|
39 |
+
mpmath==1.2.1 ; python_version >= "3.9" and python_version < "4.0"
|
40 |
+
multidict==6.0.4 ; python_version >= "3.9" and python_version < "4.0"
|
41 |
+
numpy==1.24.1 ; python_version < "4.0" and python_version >= "3.9"
|
42 |
+
onnxruntime==1.13.1 ; python_version >= "3.9" and python_version < "4.0"
|
43 |
+
orjson==3.8.4 ; python_version >= "3.9" and python_version < "4.0"
|
44 |
+
packaging==23.0 ; python_version >= "3.9" and python_version < "4.0"
|
45 |
+
pandas==1.5.2 ; python_version >= "3.9" and python_version < "4.0"
|
46 |
+
pillow==9.4.0 ; python_version >= "3.9" and python_version < "4.0"
|
47 |
+
protobuf==4.21.12 ; python_version >= "3.9" and python_version < "4.0"
|
48 |
+
pycryptodome==3.16.0 ; python_version >= "3.9" and python_version < "4.0"
|
49 |
+
pydantic==1.10.4 ; python_version >= "3.9" and python_version < "4.0"
|
50 |
+
pydub==0.25.1 ; python_version >= "3.9" and python_version < "4.0"
|
51 |
+
pyopenjtalk==0.3.0 ; python_version >= "3.9" and python_version < "4.0"
|
52 |
+
pyparsing==3.0.9 ; python_version >= "3.9" and python_version < "4.0"
|
53 |
+
pyreadline3==3.4.1 ; sys_platform == "win32" and python_version >= "3.9" and python_version < "4.0"
|
54 |
+
pyrsistent==0.19.3 ; python_version >= "3.9" and python_version < "4.0"
|
55 |
+
python-dateutil==2.8.2 ; python_version >= "3.9" and python_version < "4.0"
|
56 |
+
python-multipart==0.0.5 ; python_version >= "3.9" and python_version < "4.0"
|
57 |
+
pytz==2022.7 ; python_version >= "3.9" and python_version < "4.0"
|
58 |
+
pyyaml==6.0 ; python_version >= "3.9" and python_version < "4.0"
|
59 |
+
requests==2.28.1 ; python_version >= "3.9" and python_version < "4"
|
60 |
+
rfc3986[idna2008]==1.5.0 ; python_version >= "3.9" and python_version < "4.0"
|
61 |
+
setuptools-scm==7.1.0 ; python_version >= "3.9" and python_version < "4.0"
|
62 |
+
setuptools==65.6.3 ; python_version >= "3.9" and python_version < "4.0"
|
63 |
+
six==1.16.0 ; python_version >= "3.9" and python_version < "4.0"
|
64 |
+
sniffio==1.3.0 ; python_version >= "3.9" and python_version < "4.0"
|
65 |
+
starlette==0.22.0 ; python_version >= "3.9" and python_version < "4.0"
|
66 |
+
sympy==1.11.1 ; python_version >= "3.9" and python_version < "4.0"
|
67 |
+
tomli==2.0.1 ; python_version >= "3.9" and python_version < "3.11"
|
68 |
+
toolz==0.12.0 ; python_version >= "3.9" and python_version < "4.0"
|
69 |
+
tqdm==4.64.1 ; python_version >= "3.9" and python_version < "4.0"
|
70 |
+
typing-extensions==4.4.0 ; python_version >= "3.9" and python_version < "4.0"
|
71 |
+
uc-micro-py==1.0.1 ; python_version >= "3.9" and python_version < "4.0"
|
72 |
+
unidecode==1.3.6 ; python_version >= "3.9" and python_version < "4.0"
|
73 |
+
urllib3==1.26.13 ; python_version >= "3.9" and python_version < "4"
|
74 |
+
uvicorn==0.20.0 ; python_version >= "3.9" and python_version < "4.0"
|
75 |
+
websockets==10.4 ; python_version >= "3.9" and python_version < "4.0"
|
76 |
+
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "4.0" and sys_platform == "win32"
|
77 |
+
yarl==1.8.2 ; python_version >= "3.9" and python_version < "4.0"
|
setup.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# sudo su
|
2 |
+
conda create -n dl python=3.9 -y
|
3 |
+
conda init bash
|
4 |
+
bash
|
5 |
+
|
6 |
+
conda activate dl
|
7 |
+
export POETRY_VERSION=1.3.1
|
8 |
+
export DEBIAN_FRONTEND=noninteractive && \
|
9 |
+
sudo apt-get update && \
|
10 |
+
sudo apt-get install cmake build-essential -y --no-install-recommends && \
|
11 |
+
pip install poetry==$POETRY_VERSION
|
12 |
+
|
13 |
+
|
14 |
+
poetry export -f requirements.txt -o requirements.txt --without dev --without test --without-hashes && \
|
15 |
+
pip install --upgrade pip && \
|
16 |
+
pip install -r requirements.txt
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
function run{
|
21 |
+
python -m app.main
|
22 |
+
}
|
util/build_docker.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
export DOCKER_BUILDKIT=1
|
2 |
+
docker build -f Dockerfile -t ccdesue/vits_demo .
|
util/extract_w.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from tabnanny import check
|
2 |
+
import torch
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
path = r"/workspaces/vits_web_demo/export/model/D_second.pth"
|
6 |
+
model_path = pathlib.Path(path)
|
7 |
+
|
8 |
+
assert model_path.exists(), "model path does not exist"
|
9 |
+
|
10 |
+
checkpoint = torch.load(str(model_path), map_location='cpu')
|
11 |
+
|
12 |
+
state_file = checkpoint['model']
|
13 |
+
iteration = checkpoint['iteration']
|
14 |
+
|
15 |
+
out_path = model_path.parent / pathlib.Path("19_"+str(iteration)+'_demo'+'.pth')
|
16 |
+
out_path = str(out_path)
|
17 |
+
torch.save({'model': state_file,
|
18 |
+
'iteration': iteration,
|
19 |
+
'optimizer': None,
|
20 |
+
'learning_rate': None}, out_path)
|