stashface / app.py
cc1234
change back to old gradio
916120c
raw
history blame
8.7 kB
import os
import io
import time
import json
import math
import base64
from uuid import uuid4
from PIL import Image as PILImage
os.environ["DEEPFACE_HOME"] = "."
import pyzipper
import numpy as np
import gradio as gr
from annoy import AnnoyIndex
from deepface import DeepFace
index = AnnoyIndex(512, "euclidean")
index.load(f"face.db")
ANNOY_INDEX = json.load(open(f"face.json"))
with pyzipper.AESZipFile('persons.zip') as zf:
password = os.getenv("VISAGE_KEY","").encode('ascii')
zf.setpassword(password)
PERFORMER_DB = json.loads(zf.read('performers.json'))
## Prediction functions
def image_search_performer(image, threshold=20.0, results=3):
"""Search for a performer in an image
Returns a list of performers with at least following keys:
- id: the performer's id
- distance: the distance between the face in the image and the performer's face
- confidence: a confidence score between 0 and 100
- hits: the number of times the performer was found in our database
"""
image_array = np.array(image)
face = DeepFace.represent(img_path = image_array, detector_backend='retinaface', model_name='Facenet512', normalization="Facenet2018")[0]['embedding']
return search_performer(face, threshold, results)
def image_search_performers(image, threshold=20.0, results=3):
image_array = np.array(image)
response = []
t = time.time()
try:
faces = DeepFace.represent(img_path = image_array, detector_backend='retinaface', model_name='Facenet512', normalization="Facenet2018")
# faces = DeepFace.represent(img_path = image_array, detector_backend='yolov8', model_name='Facenet512', normalization="Facenet2018")
# faces = DeepFace.represent(img_path = image_array, detector_backend='mtcnn', model_name='Facenet512', normalization="Facenet2018")
except ValueError as e:
print(e)
raise gr.Error("No faces found in the image")
print(f"Time to find faces: {time.time() - t}")
for face in faces:
embedding = face['embedding']
area = face['facial_area']
confidence = face['face_confidence']
cimage = image.crop((area['x'], area['y'], area['x'] + area['w'], area['y'] + area['h']))
buf = io.BytesIO()
cimage.save(buf, format='JPEG')
im_b64 = base64.b64encode(buf.getvalue()).decode('ascii')
response.append({
'image': im_b64,
'confidence': confidence,
'performers': search_performer(embedding, threshold, results)
})
return response
def vector_search_performer(vector_json, threshold=20.0, results=3):
"""Search for a performer from a vector
The vector should be created with Deepface and should be a 512 vector.
For best results use the following settings:
- detector_backend: retinaface
- model: Facenet512
- normalization: Facenet2018
Returns a list of performers with at least following keys:
- id: the performer's id
- distance: the distance between the face in the image and the performer's face
- confidence: a confidence score between 0 and 100
- hits: the number of times the performer was found in our database
"""
vector = np.array(json.loads(vector_json))
return search_performer(vector, threshold, results)
def search_performer(vector, threshold=20.0, results=3):
threshold = threshold or 20.0
results = results or 3
ids, distances = index.get_nns_by_vector(
vector, 50, search_k=100000, include_distances=True
)
persons = {}
for p, distance in zip(ids, distances):
id = ANNOY_INDEX[p]
if id in persons:
persons[id]["hits"] += 1
persons[id]["distance"] -= 0.5
persons[id]["confidence"] = normalize_confidence_from_distance(persons[id]["distance"], threshold)
continue
persons[id] = {
"id": id,
"distance": round(distance, 2),
"confidence": normalize_confidence_from_distance(distance, threshold),
"hits": 1,
}
if id in PERFORMER_DB:
persons[id].update(PERFORMER_DB.get(id))
persons = sorted(persons.values(), key=lambda x: x["distance"])
# persons = [p for p in persons if p["distance"] < threshold]
return persons[:results]
def normalize_confidence_from_distance(distance, threshold=20.0):
"""Normalize confidence to 0-100 scale"""
confidence = face_distance_to_conf(distance,threshold)
return int(((confidence - 0.0) / (1.0 - 0.0)) * (100.0 - 0.0) + 0.0)
def face_distance_to_conf(face_distance, face_match_threshold=20.0):
"""Using a face distance, calculate a similarity confidence value"""
if face_distance > face_match_threshold:
# The face is far away, so give it a low confidence
range = (1.0 - face_match_threshold)
linear_val = (1.0 - face_distance) / (range * 2.0)
return linear_val
else:
# The face is close, so give it a high confidence
range = face_match_threshold
linear_val = 1.0 - (face_distance / (range * 2.0))
# But adjust this value by a curve so that we don't get a linear
# transition from close to far. We want it to be more confident
# the closer it is.
return linear_val + ((1.0 - linear_val) * math.pow((linear_val - 0.5) * 2, 0.2))
def find_faces_in_sprite(image, vtt):
vtt = base64.b64decode(vtt.replace("data:text/vtt;base64,", ""))
sprite = PILImage.fromarray(image)
results = []
for i, (left, top, right, bottom, time_seconds) in enumerate(getVTToffsets(vtt)):
cut_frame = sprite.crop((left, top, left + right, top + bottom))
faces = DeepFace.extract_faces(np.asarray(cut_frame), detector_backend="mediapipe", enforce_detection=False, align=False)
faces = [face for face in faces if face['confidence'] > 0.6]
if faces:
size = faces[0]['facial_area']['w'] * faces[0]['facial_area']['h']
data = {'id': str(uuid4()), "offset": (left, top, right, bottom), "frame": i, "time": time_seconds, 'size': size}
results.append(data)
return results
def getVTToffsets(vtt):
time_seconds = 0
left = top = right = bottom = None
for line in vtt.decode("utf-8").split("\n"):
line = line.strip()
if "-->" in line:
# grab the start time
# 00:00:00.000 --> 00:00:41.000
start = line.split("-->")[0].strip().split(":")
# convert to seconds
time_seconds = (
int(start[0]) * 3600
+ int(start[1]) * 60
+ float(start[2])
)
left = top = right = bottom = None
elif "xywh=" in line:
left, top, right, bottom = line.split("xywh=")[-1].split(",")
left, top, right, bottom = (
int(left),
int(top),
int(right),
int(bottom),
)
else:
continue
if not left:
continue
yield left, top, right, bottom, time_seconds
image_search = gr.Interface(
fn=image_search_performer,
inputs=[
gr.Image(),
gr.Slider(label="threshold",minimum=0.0, maximum=30.0, value=20.0),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
title="Who is in the photo?",
description="Upload an image of a person and we'll tell you who it is.",
)
image_search_multiple = gr.Interface(
fn=image_search_performers,
inputs=[
gr.Image(type="pil"),
gr.Slider(label="threshold",minimum=0.0, maximum=30.0, value=20.0),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
title="Who is in the photo?",
description="Upload an image of a person(s) and we'll tell you who it is.",
)
vector_search = gr.Interface(
fn=vector_search_performer,
inputs=[
gr.Textbox(),
gr.Slider(label="threshold",minimum=0.0, maximum=30.0, value=20.0),
gr.Slider(label="results", minimum=0, maximum=50, value=3, step=1),
],
outputs=gr.JSON(label=""),
title="Who is in the photo?",
description="512 vector created with deepface of a person and we'll tell you who it is.",
)
faces_in_sprite = gr.Interface(
fn=find_faces_in_sprite,
inputs=[
gr.Image(),
gr.Textbox(label="VTT file")
],
outputs=gr.JSON(label=""),
)
gr.TabbedInterface([image_search, image_search_multiple, vector_search, faces_in_sprite]).queue().launch(server_name="0.0.0.0")