Spaces:
Sleeping
Sleeping
Commit
•
0e80ee6
1
Parent(s):
49cebd1
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
import torch
|
2 |
import spaces
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
4 |
-
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from insightface.app import FaceAnalysis
|
|
|
7 |
import gradio as gr
|
8 |
import cv2
|
9 |
|
10 |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
11 |
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
12 |
-
|
|
|
|
|
13 |
|
14 |
device = "cuda"
|
15 |
|
@@ -31,25 +34,37 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
31 |
)
|
32 |
|
33 |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
|
|
34 |
|
35 |
@spaces.GPU(enable_queue=True)
|
36 |
-
def generate_image(images, prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
|
37 |
pipe.to(device)
|
38 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
39 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
40 |
-
|
41 |
faceid_all_embeds = []
|
|
|
42 |
for image in images:
|
43 |
face = cv2.imread(image)
|
44 |
faces = app.get(face)
|
45 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
46 |
faceid_all_embeds.append(faceid_embed)
|
47 |
-
|
|
|
|
|
|
|
48 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
print(image)
|
54 |
return image
|
55 |
css = '''
|
@@ -66,7 +81,8 @@ demo = gr.Interface(
|
|
66 |
gr.Textbox(label="Prompt",
|
67 |
info="Try something like 'a photo of a man/woman/person'",
|
68 |
placeholder="A photo of a [man/woman/person]..."),
|
69 |
-
gr.Textbox(label="Negative Prompt", placeholder="low quality")
|
|
|
70 |
],
|
71 |
outputs=[gr.Gallery(label="Generated Image")],
|
72 |
title="IP-Adapter-FaceID demo",
|
|
|
1 |
import torch
|
2 |
import spaces
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
4 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from insightface.app import FaceAnalysis
|
7 |
+
from insightface.utils import face_align
|
8 |
import gradio as gr
|
9 |
import cv2
|
10 |
|
11 |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
12 |
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
13 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
14 |
+
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
|
15 |
+
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
|
16 |
|
17 |
device = "cuda"
|
18 |
|
|
|
34 |
)
|
35 |
|
36 |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
37 |
+
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
|
38 |
|
39 |
@spaces.GPU(enable_queue=True)
|
40 |
+
def generate_image(images, prompt, negative_prompt, preserve_face_structure, progress=gr.Progress(track_tqdm=True)):
|
41 |
pipe.to(device)
|
42 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
43 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
44 |
+
|
45 |
faceid_all_embeds = []
|
46 |
+
first_iteration = True
|
47 |
for image in images:
|
48 |
face = cv2.imread(image)
|
49 |
faces = app.get(face)
|
50 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
51 |
faceid_all_embeds.append(faceid_embed)
|
52 |
+
if(first_iteration):
|
53 |
+
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
54 |
+
first_iteration = False
|
55 |
+
|
56 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
57 |
|
58 |
+
if(not preserve_face_structure):
|
59 |
+
image = ip_model.generate(
|
60 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
61 |
+
width=512, height=512, num_inference_steps=30
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
image = ip_model_plus.generate(
|
65 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
66 |
+
face_image=face_image, shortcut=True, s_scale=1.5, width=512, height=512, num_inference_steps=30
|
67 |
+
)
|
68 |
print(image)
|
69 |
return image
|
70 |
css = '''
|
|
|
81 |
gr.Textbox(label="Prompt",
|
82 |
info="Try something like 'a photo of a man/woman/person'",
|
83 |
placeholder="A photo of a [man/woman/person]..."),
|
84 |
+
gr.Textbox(label="Negative Prompt", placeholder="low quality"),
|
85 |
+
gr.Checkbox(label="Preserve Face Structure", value=False),
|
86 |
],
|
87 |
outputs=[gr.Gallery(label="Generated Image")],
|
88 |
title="IP-Adapter-FaceID demo",
|