Spaces:
Runtime error
Runtime error
from toolbox import CatchException, report_execption, gen_time_str | |
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion | |
from toolbox import write_history_to_file, get_log_folder | |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive | |
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency | |
from .crazy_utils import read_and_clean_pdf_text | |
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url | |
from colorful import * | |
import os | |
import math | |
import logging | |
def markdown_to_dict(article_content): | |
import markdown | |
from bs4 import BeautifulSoup | |
cur_t = "" | |
cur_c = "" | |
results = {} | |
for line in article_content: | |
if line.startswith('#'): | |
if cur_t!="": | |
if cur_t not in results: | |
results.update({cur_t:cur_c.lstrip('\n')}) | |
else: | |
# 处理重名的章节 | |
results.update({cur_t + " " + gen_time_str():cur_c.lstrip('\n')}) | |
cur_t = line.rstrip('\n') | |
cur_c = "" | |
else: | |
cur_c += line | |
results_final = {} | |
for k in list(results.keys()): | |
if k.startswith('# '): | |
results_final['title'] = k.split('# ')[-1] | |
results_final['authors'] = results.pop(k).lstrip('\n') | |
if k.startswith('###### Abstract'): | |
results_final['abstract'] = results.pop(k).lstrip('\n') | |
results_final_sections = [] | |
for k,v in results.items(): | |
results_final_sections.append({ | |
'heading':k.lstrip("# "), | |
'text':v if len(v) > 0 else f"The beginning of {k.lstrip('# ')} section." | |
}) | |
results_final['sections'] = results_final_sections | |
return results_final | |
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): | |
disable_auto_promotion(chatbot) | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"]) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import nougat | |
import tiktoken | |
except: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", | |
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 清空历史,以免输入溢出 | |
history = [] | |
from .crazy_utils import get_files_from_everything | |
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf') | |
# 检测输入参数,如没有给定输入参数,直接退出 | |
if not success: | |
if txt == "": txt = '空空如也的输入栏' | |
# 如果没找到任何文件 | |
if len(file_manifest) == 0: | |
report_execption(chatbot, history, | |
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
return | |
# 开始正式执行任务 | |
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) | |
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt): | |
import copy | |
import tiktoken | |
TOKEN_LIMIT_PER_FRAGMENT = 1280 | |
generated_conclusion_files = [] | |
generated_html_files = [] | |
DST_LANG = "中文" | |
from crazy_functions.crazy_utils import nougat_interface, construct_html | |
nougat_handle = nougat_interface() | |
for index, fp in enumerate(file_manifest): | |
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |
fpp = yield from nougat_handle.NOUGAT_parse_pdf(fp, chatbot, history) | |
with open(fpp, 'r', encoding='utf8') as f: | |
article_content = f.readlines() | |
article_dict = markdown_to_dict(article_content) | |
logging.info(article_dict) | |
prompt = "以下是一篇学术论文的基本信息:\n" | |
# title | |
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n' | |
# authors | |
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n' | |
# abstract | |
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n' | |
# command | |
prompt += f"请将题目和摘要翻译为{DST_LANG}。" | |
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ] | |
# 单线,获取文章meta信息 | |
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( | |
inputs=prompt, | |
inputs_show_user=prompt, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, history=[], | |
sys_prompt="You are an academic paper reader。", | |
) | |
# 多线,翻译 | |
inputs_array = [] | |
inputs_show_user_array = [] | |
# get_token_num | |
from request_llm.bridge_all import model_info | |
enc = model_info[llm_kwargs['llm_model']]['tokenizer'] | |
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) | |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf | |
def break_down(txt): | |
raw_token_num = get_token_num(txt) | |
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT: | |
return [txt] | |
else: | |
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT | |
# find a smooth token limit to achieve even seperation | |
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT)) | |
token_limit_smooth = raw_token_num // count + count | |
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth) | |
for section in article_dict.get('sections'): | |
if len(section['text']) == 0: continue | |
section_frags = break_down(section['text']) | |
for i, fragment in enumerate(section_frags): | |
heading = section['heading'] | |
if len(section_frags) > 1: heading += f' Part-{i+1}' | |
inputs_array.append( | |
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}" | |
) | |
inputs_show_user_array.append( | |
f"# {heading}\n\n{fragment}" | |
) | |
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( | |
inputs_array=inputs_array, | |
inputs_show_user_array=inputs_show_user_array, | |
llm_kwargs=llm_kwargs, | |
chatbot=chatbot, | |
history_array=[meta for _ in inputs_array], | |
sys_prompt_array=[ | |
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array], | |
) | |
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None) | |
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot) | |
generated_conclusion_files.append(res_path) | |
ch = construct_html() | |
orig = "" | |
trans = "" | |
gpt_response_collection_html = copy.deepcopy(gpt_response_collection) | |
for i,k in enumerate(gpt_response_collection_html): | |
if i%2==0: | |
gpt_response_collection_html[i] = inputs_show_user_array[i//2] | |
else: | |
gpt_response_collection_html[i] = gpt_response_collection_html[i] | |
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""] | |
final.extend(gpt_response_collection_html) | |
for i, k in enumerate(final): | |
if i%2==0: | |
orig = k | |
if i%2==1: | |
trans = k | |
ch.add_row(a=orig, b=trans) | |
create_report_file_name = f"{os.path.basename(fp)}.trans.html" | |
html_file = ch.save_file(create_report_file_name) | |
generated_html_files.append(html_file) | |
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot) | |
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files))) | |
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 | |