|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import numpy as np |
|
|
|
from onnxruntime import InferenceSession, SessionOptions |
|
|
|
|
|
|
|
|
|
providers = ["CPUExecutionProvider"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_path = "chatglm-6b-int8-onnx-merged/sentencepiece.model" |
|
onnx_model_path = "chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx" |
|
|
|
|
|
|
|
past_names = [f"past_{name}_{i}" for i in range(28) for name in ["key", "value"]] |
|
present_names = [f"present_{name}_{i}" for i in range(28) for name in ["key", "value"]] |
|
output_names = ["logits"] + present_names |
|
|
|
|
|
|
|
default_past_key_values = { |
|
k: np.zeros((1, 0, 32, 128), dtype=np.float32) for k in past_names |
|
} |
|
|
|
|
|
def chat_template(history: list[tuple[str, str]], current: str): |
|
prompt = "" |
|
chat_round = 0 |
|
for question, answer in history: |
|
prompt += f"[Round {chat_round}]\n问:{question}\n答:{answer}\n" |
|
chat_round += 1 |
|
prompt += f"[Round {chat_round}]\n问:{current}\n答:" |
|
return prompt |
|
|
|
|
|
def process_response(response: str): |
|
response = response.strip() |
|
response = response.replace("[[训练时间]]", "2023年") |
|
punkts = [ |
|
[",", ","], |
|
["!", "!"], |
|
[":", ":"], |
|
[";", ";"], |
|
["\?", "?"], |
|
] |
|
for item in punkts: |
|
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response) |
|
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response) |
|
return response |
|
|
|
|
|
class ChatGLMModel(): |
|
|
|
def __init__(self, onnx_model_path=onnx_model_path, tokenizer_path=tokenizer_path, profile=False) -> None: |
|
self.tokenizer = ChatGLMTokenizer(tokenizer_path) |
|
options = SessionOptions() |
|
options.enable_profiling = profile |
|
self.session = InferenceSession(onnx_model_path, options, providers=providers) |
|
self.eop_token_id = self.tokenizer["<eop>"] |
|
|
|
|
|
def prepare_input(self, prompt: str): |
|
input_ids, prefix_mask = self.tokenizer.encode(prompt) |
|
|
|
input_ids = np.array([input_ids], dtype=np.longlong) |
|
prefix_mask = np.array([prefix_mask], dtype=np.longlong) |
|
|
|
return input_ids, prefix_mask, default_past_key_values |
|
|
|
|
|
def sample_next_token(self, logits: np.ndarray, top_k=50, top_p=0.7, temperature=1): |
|
|
|
exp_logits = np.exp(logits / temperature) |
|
probs = exp_logits / np.sum(exp_logits) |
|
|
|
|
|
top_k_idx = np.argsort(-probs)[:top_k] |
|
top_k_probs = probs[top_k_idx] |
|
|
|
|
|
cumsum_probs = np.cumsum(top_k_probs) |
|
top_k_probs[(cumsum_probs - top_k_probs) > top_p] = 0.0 |
|
top_k_probs = top_k_probs / np.sum(top_k_probs) |
|
|
|
|
|
next_token = np.random.choice(top_k_idx, size=1, p=top_k_probs) |
|
return next_token[0].item() |
|
|
|
|
|
def generate_iterate(self, prompt: str, max_generated_tokens=100, top_k=50, top_p=0.7, temperature=1): |
|
input_ids, prefix_mask, past_key_values = self.prepare_input(prompt) |
|
output_tokens = [] |
|
|
|
while True: |
|
inputs = { |
|
"input_ids": input_ids, |
|
"prefix_mask": prefix_mask, |
|
"use_past": np.array(len(output_tokens) > 0), |
|
} |
|
inputs.update(past_key_values) |
|
|
|
logits, *past_key_values = self.session.run(output_names, inputs) |
|
past_key_values = { k: v for k, v in zip(past_names, past_key_values) } |
|
|
|
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature) |
|
|
|
output_tokens += [next_token] |
|
|
|
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens: |
|
break |
|
|
|
input_ids = np.array([[next_token]], dtype=np.longlong) |
|
prefix_mask = np.concatenate([prefix_mask, np.array([[0]], dtype=np.longlong)], axis=1) |
|
|
|
yield process_response(self.tokenizer.decode(output_tokens)) |
|
|
|
return process_response(self.tokenizer.decode(output_tokens)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
|
|
def replace_spaces_with_blank(match: re.Match[str]): |
|
return f"<|blank_{len(match.group())}|>" |
|
|
|
|
|
def replace_blank_with_spaces(match: re.Match[str]): |
|
return " " * int(match.group(1)) |
|
|
|
|
|
class ChatGLMTokenizer: |
|
def __init__(self, vocab_file): |
|
assert vocab_file is not None |
|
self.vocab_file = vocab_file |
|
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"] |
|
self.text_tokenizer = SentencePieceProcessor(str(vocab_file)) |
|
|
|
def __len__(self): |
|
return len(self.text_tokenizer) |
|
|
|
def __getitem__(self, key: str): |
|
return self.text_tokenizer[key] |
|
|
|
|
|
def preprocess(self, text: str, linebreak=True, whitespaces=True): |
|
if linebreak: |
|
text = text.replace("\n", "<n>") |
|
if whitespaces: |
|
text = text.replace("\t", "<|tab|>") |
|
text = re.sub(r" {2,80}", replace_spaces_with_blank, text) |
|
return text |
|
|
|
|
|
def encode( |
|
self, text: str, text_pair: str = None, |
|
linebreak=True, whitespaces=True, |
|
add_dummy_prefix=True, special_tokens=True, |
|
) -> tuple[list[int], list[int]]: |
|
""" |
|
text: Text to encode. Bidirectional part with a [gMASK] and an <sop> for causal LM. |
|
text_pair: causal LM part. |
|
linebreak: Whether to encode newline (\n) in text. |
|
whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. |
|
special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. |
|
add_dummy_prefix: Whether to add dummy blank space in the beginning. |
|
""" |
|
text = self.preprocess(text, linebreak, whitespaces) |
|
if not add_dummy_prefix: |
|
text = "<n>" + text |
|
|
|
tokens = self.text_tokenizer.encode(text) |
|
prefix_mask = [1] * len(tokens) |
|
if special_tokens: |
|
tokens += [self.text_tokenizer["[gMASK]"], self.text_tokenizer["<sop>"]] |
|
prefix_mask += [1, 0] |
|
|
|
if text_pair is not None: |
|
text_pair = self.preprocess(text_pair, linebreak, whitespaces) |
|
pair_tokens = self.text_tokenizer.encode(text_pair) |
|
tokens += pair_tokens |
|
prefix_mask += [0] * len(pair_tokens) |
|
if special_tokens: |
|
tokens += [self.text_tokenizer["<eop>"]] |
|
prefix_mask += [0] |
|
|
|
return (tokens if add_dummy_prefix else tokens[2:]), prefix_mask |
|
|
|
|
|
def decode(self, text_ids: list[int]) -> str: |
|
text = self.text_tokenizer.decode(text_ids) |
|
text = text.replace("<n>", "\n") |
|
text = text.replace("<|tab|>", "\t") |
|
text = re.sub(r"<\|blank_(\d\d?)\|>", replace_blank_with_spaces, text) |
|
return text |
|
|
|
|
|
|