|
model_name = "Qwen" |
|
cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`" |
|
|
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import time |
|
import threading |
|
import importlib |
|
from toolbox import update_ui, get_conf |
|
from multiprocessing import Process, Pipe |
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM |
|
|
|
|
|
|
|
|
|
|
|
|
|
@SingletonLocalLLM |
|
class GetONNXGLMHandle(LocalLLMHandle): |
|
|
|
def load_model_info(self): |
|
|
|
self.model_name = model_name |
|
self.cmd_to_install = cmd_to_install |
|
|
|
def load_model_and_tokenizer(self): |
|
|
|
import os, glob |
|
import os |
|
import platform |
|
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
model_id = 'qwen/Qwen-7B-Chat' |
|
revision = 'v1.0.1' |
|
self._tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", revision=revision, trust_remote_code=True, fp16=True).eval() |
|
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) |
|
self._model = model |
|
|
|
return self._model, self._tokenizer |
|
|
|
def llm_stream_generator(self, **kwargs): |
|
|
|
def adaptor(kwargs): |
|
query = kwargs['query'] |
|
max_length = kwargs['max_length'] |
|
top_p = kwargs['top_p'] |
|
temperature = kwargs['temperature'] |
|
history = kwargs['history'] |
|
return query, max_length, top_p, temperature, history |
|
|
|
query, max_length, top_p, temperature, history = adaptor(kwargs) |
|
|
|
for response in self._model.chat(self._tokenizer, query, history=history, stream=True): |
|
yield response |
|
|
|
def try_to_import_special_deps(self, **kwargs): |
|
|
|
|
|
import importlib |
|
importlib.import_module('modelscope') |
|
|
|
|
|
|
|
|
|
|
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name) |