|
from toolbox import CatchException, report_exception, get_log_folder, gen_time_str, check_packages |
|
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion |
|
from toolbox import write_history_to_file, promote_file_to_downloadzone |
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive |
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency |
|
from .crazy_utils import read_and_clean_pdf_text |
|
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url, translate_pdf |
|
from colorful import * |
|
import os |
|
|
|
|
|
@CatchException |
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): |
|
|
|
disable_auto_promotion(chatbot) |
|
|
|
chatbot.append([ |
|
"函数插件功能?", |
|
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
try: |
|
check_packages(["fitz", "tiktoken", "scipdf"]) |
|
except: |
|
report_exception(chatbot, history, |
|
a=f"解析项目: {txt}", |
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken scipdf_parser```。") |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
history = [] |
|
|
|
from .crazy_utils import get_files_from_everything |
|
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf') |
|
|
|
if not success: |
|
if txt == "": txt = '空空如也的输入栏' |
|
|
|
|
|
if len(file_manifest) == 0: |
|
report_exception(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到任何.pdf拓展名的文件: {txt}") |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
grobid_url = get_avail_grobid_url() |
|
if grobid_url is not None: |
|
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url) |
|
else: |
|
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3) |
|
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) |
|
|
|
|
|
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url): |
|
import copy, json |
|
TOKEN_LIMIT_PER_FRAGMENT = 1024 |
|
generated_conclusion_files = [] |
|
generated_html_files = [] |
|
DST_LANG = "中文" |
|
from crazy_functions.pdf_fns.report_gen_html import construct_html |
|
for index, fp in enumerate(file_manifest): |
|
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) |
|
article_dict = parse_pdf(fp, grobid_url) |
|
grobid_json_res = os.path.join(get_log_folder(), gen_time_str() + "grobid.json") |
|
with open(grobid_json_res, 'w+', encoding='utf8') as f: |
|
f.write(json.dumps(article_dict, indent=4, ensure_ascii=False)) |
|
promote_file_to_downloadzone(grobid_json_res, chatbot=chatbot) |
|
|
|
if article_dict is None: raise RuntimeError("解析PDF失败,请检查PDF是否损坏。") |
|
yield from translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG) |
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files))) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt): |
|
""" |
|
此函数已经弃用 |
|
""" |
|
import copy |
|
TOKEN_LIMIT_PER_FRAGMENT = 1024 |
|
generated_conclusion_files = [] |
|
generated_html_files = [] |
|
from crazy_functions.pdf_fns.report_gen_html import construct_html |
|
for index, fp in enumerate(file_manifest): |
|
|
|
file_content, page_one = read_and_clean_pdf_text(fp) |
|
file_content = file_content.encode('utf-8', 'ignore').decode() |
|
page_one = str(page_one).encode('utf-8', 'ignore').decode() |
|
|
|
|
|
from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit |
|
paper_fragments = breakdown_text_to_satisfy_token_limit(txt=file_content, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs['llm_model']) |
|
page_one_fragments = breakdown_text_to_satisfy_token_limit(txt=page_one, limit=TOKEN_LIMIT_PER_FRAGMENT//4, llm_model=llm_kwargs['llm_model']) |
|
|
|
|
|
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0] |
|
|
|
|
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", |
|
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", |
|
llm_kwargs=llm_kwargs, |
|
chatbot=chatbot, history=[], |
|
sys_prompt="Your job is to collect information from materials。", |
|
) |
|
|
|
|
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( |
|
inputs_array=[ |
|
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments], |
|
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments], |
|
llm_kwargs=llm_kwargs, |
|
chatbot=chatbot, |
|
history_array=[[paper_meta] for _ in paper_fragments], |
|
sys_prompt_array=[ |
|
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments], |
|
|
|
) |
|
gpt_response_collection_md = copy.deepcopy(gpt_response_collection) |
|
|
|
for i,k in enumerate(gpt_response_collection_md): |
|
if i%2==0: |
|
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n " |
|
else: |
|
gpt_response_collection_md[i] = gpt_response_collection_md[i] |
|
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""] |
|
final.extend(gpt_response_collection_md) |
|
create_report_file_name = f"{os.path.basename(fp)}.trans.md" |
|
res = write_history_to_file(final, create_report_file_name) |
|
promote_file_to_downloadzone(res, chatbot=chatbot) |
|
|
|
|
|
generated_conclusion_files.append(f'{get_log_folder()}/{create_report_file_name}') |
|
chatbot.append((f"{fp}完成了吗?", res)) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
try: |
|
ch = construct_html() |
|
orig = "" |
|
trans = "" |
|
gpt_response_collection_html = copy.deepcopy(gpt_response_collection) |
|
for i,k in enumerate(gpt_response_collection_html): |
|
if i%2==0: |
|
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '') |
|
else: |
|
gpt_response_collection_html[i] = gpt_response_collection_html[i] |
|
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""] |
|
final.extend(gpt_response_collection_html) |
|
for i, k in enumerate(final): |
|
if i%2==0: |
|
orig = k |
|
if i%2==1: |
|
trans = k |
|
ch.add_row(a=orig, b=trans) |
|
create_report_file_name = f"{os.path.basename(fp)}.trans.html" |
|
generated_html_files.append(ch.save_file(create_report_file_name)) |
|
except: |
|
from toolbox import trimmed_format_exc |
|
print('writing html result failed:', trimmed_format_exc()) |
|
|
|
|
|
for pdf_path in generated_conclusion_files: |
|
|
|
rename_file = f'翻译-{os.path.basename(pdf_path)}' |
|
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot) |
|
for html_path in generated_html_files: |
|
|
|
rename_file = f'翻译-{os.path.basename(html_path)}' |
|
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot) |
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files))) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
|