|
import gradio as gr
|
|
import os
|
|
import markdown, mdtex2html
|
|
from predict import predict
|
|
from show_math import convert as convert_math
|
|
from config import proxies, WEB_PORT
|
|
|
|
def find_free_port():
|
|
import socket
|
|
from contextlib import closing
|
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
|
|
s.bind(('', 0))
|
|
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
return s.getsockname()[1]
|
|
|
|
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
|
|
|
initial_prompt = "Serve me as a writing and programming assistant."
|
|
title_html = """<h1 align="center">ChatGPT 学术优化</h1>"""
|
|
|
|
import logging
|
|
os.makedirs('gpt_log', exist_ok=True)
|
|
logging.basicConfig(filename='gpt_log/chat_secrets.log', level=logging.INFO, encoding='utf-8')
|
|
print('所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log,请注意自我隐私保护哦!')
|
|
|
|
from functional import get_functionals
|
|
functional = get_functionals()
|
|
def reset_textbox(): return gr.update(value='')
|
|
|
|
def text_divide_paragraph(text):
|
|
if '```' in text:
|
|
|
|
return text
|
|
else:
|
|
|
|
lines = text.split("\n")
|
|
for i, line in enumerate(lines):
|
|
if i!=0: lines[i] = "<p>"+lines[i].replace(" ", " ")+"</p>"
|
|
text = "".join(lines)
|
|
return text
|
|
|
|
def markdown_convertion(txt):
|
|
if ('$' in txt) and ('```' not in txt):
|
|
math_config = {'mdx_math': {'enable_dollar_delimiter': True}}
|
|
return markdown.markdown(txt,extensions=['fenced_code','tables']) + '<br><br>' + \
|
|
markdown.markdown(convert_math(txt, splitParagraphs=False),extensions=['fenced_code','tables'])
|
|
else:
|
|
return markdown.markdown(txt,extensions=['fenced_code','tables'])
|
|
|
|
|
|
def format_io(self,y):
|
|
if y is None:
|
|
return []
|
|
i_ask, gpt_reply = y[-1]
|
|
|
|
i_ask = text_divide_paragraph(i_ask)
|
|
|
|
y[-1] = (
|
|
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code','tables']),
|
|
None if gpt_reply is None else markdown_convertion(gpt_reply)
|
|
)
|
|
return y
|
|
gr.Chatbot.postprocess = format_io
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.HTML(title_html)
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
chatbot = gr.Chatbot()
|
|
chatbot.style(height=700)
|
|
chatbot.style()
|
|
history = gr.State([])
|
|
TRUE = gr.State(True)
|
|
FALSE = gr.State(False)
|
|
with gr.Column(scale=1):
|
|
with gr.Row():
|
|
with gr.Column(scale=12):
|
|
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
|
|
with gr.Column(scale=1):
|
|
submitBtn = gr.Button("Ask", variant="primary")
|
|
with gr.Row():
|
|
for k in functional:
|
|
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
|
functional[k]["Button"] = gr.Button(k, variant=variant)
|
|
from check_proxy import check_proxy
|
|
statusDisplay = gr.Markdown(f"{check_proxy(proxies)}")
|
|
systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt).style(container=True)
|
|
|
|
with gr.Accordion("arguments", open=False):
|
|
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
|
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
|
|
|
txt.submit(predict, [txt, top_p, temperature, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay])
|
|
submitBtn.click(predict, [txt, top_p, temperature, chatbot, history, systemPromptTxt], [chatbot, history, statusDisplay], show_progress=True)
|
|
|
|
for k in functional:
|
|
functional[k]["Button"].click(predict,
|
|
[txt, top_p, temperature, chatbot,history, systemPromptTxt, FALSE, TRUE, gr.State(k)], [chatbot, history, statusDisplay], show_progress=True)
|
|
|
|
print(f"URL http://localhost:{PORT}")
|
|
demo.title = "ChatGPT 学术优化"
|
|
|
|
def auto_opentab_delay():
|
|
import threading, webbrowser, time
|
|
def open(): time.sleep(2)
|
|
webbrowser.open_new_tab(f'http://localhost:{PORT}')
|
|
t = threading.Thread(target=open)
|
|
t.daemon = True; t.start()
|
|
|
|
auto_opentab_delay()
|
|
demo.queue().launch(server_name="0.0.0.0", share=True, server_port=PORT)
|
|
|