Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import pandas as pd | |
import json | |
import os | |
import re | |
import uuid | |
client = InferenceClient("tiiuae/falcon-7b-instruct") # HuggingFaceH4/zephyr-7b-beta | |
def trigger_example(example): | |
chat, updated_history = generate_response(example) | |
return chat, updated_history | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
uploaded_file, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
if uploaded_file is not None: | |
with open(uploaded_file.name, "r") as f: | |
file_content = f.read() | |
messages.append({"role": "user", "content": f"{message}\n\nFile content:\n{file_content}"}) | |
else: | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
if uploaded_file is not None: | |
print(f"Uploaded file: {uploaded_file.name}") | |
if uploaded_file.name.endswith(".csv"): | |
try: | |
df = pd.read_csv(uploaded_file.name) | |
print(f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.") | |
json_data = df.to_json(orient="records") | |
with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file: | |
json_file.write(json_data) | |
print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json") | |
except Exception as e: | |
print(f"Error loading CSV file: {e}") | |
elif uploaded_file.name.endswith(".txt"): | |
try: | |
with open(uploaded_file.name, "r") as f: | |
text = f.read() | |
print(f"Text file loaded with {len(text)} characters.") | |
json_data = json.dumps({"text": text}) | |
with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file: | |
json_file.write(json_data) | |
print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json") | |
except Exception as e: | |
print(f"Error loading text file: {e}") | |
def clear_chat(): | |
return [], [], str(uuid.uuid4()) | |
examples = [ | |
"Explain the relativity theory in French", | |
"Como sair de um helicóptero que caiu na água?", | |
"¿Cómo le explicarías el aprendizaje automático a un extraterrestre?", | |
"Explain gravity to a chicken.", | |
"Give me an example of an endangered species and let me know what I can do to help preserve it", | |
"Formally introduce the transformer architecture with notation.", | |
] | |
demo = gr.ChatInterface( | |
respond, | |
title="Nixie Steamcore, a hotbot!", | |
additional_inputs=[ | |
gr.Textbox(value="Nixie Steamcore, a hotbot!", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.File(label="Upload a document"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |
""" | |
if __name__ == "__main__": | |
# demo.launch(debug=True) | |
try: | |
demo.queue(api_open=False, max_size=40).launch(show_api=False) | |
except Exception as e: | |
print(f"Error: {e}") | |
""" | |
""" | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
""" |