camparchimedes's picture
Update app.py
41e855d verified
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
import json
import os
import re
import uuid
client = InferenceClient("tiiuae/falcon-7b-instruct") # HuggingFaceH4/zephyr-7b-beta
def trigger_example(example):
chat, updated_history = generate_response(example)
return chat, updated_history
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
uploaded_file,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
if uploaded_file is not None:
with open(uploaded_file.name, "r") as f:
file_content = f.read()
messages.append({"role": "user", "content": f"{message}\n\nFile content:\n{file_content}"})
else:
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
if uploaded_file is not None:
print(f"Uploaded file: {uploaded_file.name}")
if uploaded_file.name.endswith(".csv"):
try:
df = pd.read_csv(uploaded_file.name)
print(f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.")
json_data = df.to_json(orient="records")
with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file:
json_file.write(json_data)
print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json")
except Exception as e:
print(f"Error loading CSV file: {e}")
elif uploaded_file.name.endswith(".txt"):
try:
with open(uploaded_file.name, "r") as f:
text = f.read()
print(f"Text file loaded with {len(text)} characters.")
json_data = json.dumps({"text": text})
with open(f"{uploaded_file.name.split('.')[0]}.json", "w") as json_file:
json_file.write(json_data)
print(f"JSON file created: {uploaded_file.name.split('.')[0]}.json")
except Exception as e:
print(f"Error loading text file: {e}")
def clear_chat():
return [], [], str(uuid.uuid4())
examples = [
"Explain the relativity theory in French",
"Como sair de um helicóptero que caiu na água?",
"¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
"Explain gravity to a chicken.",
"Give me an example of an endangered species and let me know what I can do to help preserve it",
"Formally introduce the transformer architecture with notation.",
]
demo = gr.ChatInterface(
respond,
title="Nixie Steamcore, a hotbot!",
additional_inputs=[
gr.Textbox(value="Nixie Steamcore, a hotbot!", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.File(label="Upload a document"),
],
)
if __name__ == "__main__":
demo.launch(debug=True)
"""
if __name__ == "__main__":
# demo.launch(debug=True)
try:
demo.queue(api_open=False, max_size=40).launch(show_api=False)
except Exception as e:
print(f"Error: {e}")
"""
"""
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
"""